Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- .env +1 -0
- app.py +185 -0
- requirements.txt +9 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
GOOGLE_API_KEY="AIzaSyDnI8-gASsDS0_94frGkc-A3eQVgTvIHDk"
|
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
import docx2txt
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.chains.question_answering import load_qa_chain
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
import google.generativeai as genai
|
12 |
+
import logging
|
13 |
+
import json
|
14 |
+
import base64
|
15 |
+
from datetime import datetime
|
16 |
+
import sqlite3
|
17 |
+
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
logging.basicConfig(level=logging.DEBUG)
|
22 |
+
|
23 |
+
# Configure Generative AI API key
|
24 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
25 |
+
if not api_key:
|
26 |
+
logging.error("Google API key not found. Make sure .env file is set up correctly.")
|
27 |
+
genai.configure(api_key=api_key)
|
28 |
+
|
29 |
+
# Initialize a global list to store query history
|
30 |
+
query_history = []
|
31 |
+
|
32 |
+
# Connect to the SQLite database
|
33 |
+
conn = sqlite3.connect('documents.db')
|
34 |
+
c = conn.cursor()
|
35 |
+
|
36 |
+
# Create the documents table if it doesn't exist
|
37 |
+
c.execute('''CREATE TABLE IF NOT EXISTS documents
|
38 |
+
(id INTEGER PRIMARY KEY, document_type TEXT, document_content TEXT)''')
|
39 |
+
|
40 |
+
# Create the query_history table if it doesn't exist
|
41 |
+
c.execute('''CREATE TABLE IF NOT EXISTS query_history
|
42 |
+
(id INTEGER PRIMARY KEY, user_id TEXT, query TEXT, response TEXT, timestamp TEXT)''')
|
43 |
+
|
44 |
+
conn.commit()
|
45 |
+
|
46 |
+
def get_document_text(document, document_type):
|
47 |
+
"""Extract text from different document types."""
|
48 |
+
if document_type == 'pdf':
|
49 |
+
pdf_reader = PdfReader(document)
|
50 |
+
text = ""
|
51 |
+
for page in pdf_reader.pages:
|
52 |
+
text += page.extract_text()
|
53 |
+
return text
|
54 |
+
elif document_type == 'docx':
|
55 |
+
return docx2txt.process(document)
|
56 |
+
elif document_type == 'txt':
|
57 |
+
return document.read()
|
58 |
+
else:
|
59 |
+
return ""
|
60 |
+
|
61 |
+
def get_text_chunks(text):
|
62 |
+
"""Split text into manageable chunks."""
|
63 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
64 |
+
chunks = text_splitter.split_text(text)
|
65 |
+
return chunks
|
66 |
+
|
67 |
+
def get_vector_store(text_chunks):
|
68 |
+
"""Generate embeddings and create FAISS index."""
|
69 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
70 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
71 |
+
vector_store.save_local("faiss_index")
|
72 |
+
logging.info("FAISS index successfully created and saved.")
|
73 |
+
|
74 |
+
def get_conversational_chain():
|
75 |
+
"""Load conversational chain for question answering."""
|
76 |
+
prompt_template = """
|
77 |
+
Answer the question as detailed as possible from the provided context,
|
78 |
+
make sure to provide all the details, if the answer is not in
|
79 |
+
provided context just say, "answer is not available in the context",
|
80 |
+
don't provide the wrong answer\n\n
|
81 |
+
Context:\n {context}?\n
|
82 |
+
Question: \n{question}\n
|
83 |
+
|
84 |
+
Answer:
|
85 |
+
"""
|
86 |
+
|
87 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
88 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
89 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
90 |
+
return chain
|
91 |
+
|
92 |
+
def user_input(user_question, user_id):
|
93 |
+
"""Process user input and generate response."""
|
94 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
95 |
+
|
96 |
+
# Check if the FAISS index file exists before attempting to load it
|
97 |
+
if not os.path.exists("faiss_index/index.faiss"):
|
98 |
+
logging.error("FAISS index file not found. Ensure that the index is created and saved properly.")
|
99 |
+
return "Error: FAISS index file not found."
|
100 |
+
|
101 |
+
# Load FAISS index with the necessary flag
|
102 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
103 |
+
docs = new_db.similarity_search(user_question)
|
104 |
+
|
105 |
+
# Load conversational chain
|
106 |
+
chain = get_conversational_chain()
|
107 |
+
|
108 |
+
# Generate response
|
109 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
110 |
+
response_text = response["output_text"]
|
111 |
+
|
112 |
+
# Store query and response in the history
|
113 |
+
current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
114 |
+
query_history.append((user_id, user_question, response_text, current_time))
|
115 |
+
|
116 |
+
# Store query and response in the database
|
117 |
+
c.execute("INSERT INTO query_history (user_id, query, response, timestamp) VALUES (?, ?, ?, ?)",
|
118 |
+
(user_id, user_question, response_text, current_time))
|
119 |
+
conn.commit()
|
120 |
+
|
121 |
+
return response_text
|
122 |
+
|
123 |
+
def display_query_history(user_id):
|
124 |
+
"""Display the history of queries and responses for a specific user."""
|
125 |
+
st.sidebar.subheader("Query History")
|
126 |
+
c.execute("SELECT query, response, timestamp FROM query_history WHERE user_id = ?", (user_id,))
|
127 |
+
history = c.fetchall()
|
128 |
+
for query, response, timestamp in history:
|
129 |
+
st.sidebar.write(f"**Query:** {query}")
|
130 |
+
st.sidebar.write(f"**Response:** {response}")
|
131 |
+
st.sidebar.write(f"**Timestamp:** {timestamp}")
|
132 |
+
st.sidebar.write("---")
|
133 |
+
|
134 |
+
def download_query_history(user_id):
|
135 |
+
"""Allow users to download their query history as a JSON file."""
|
136 |
+
c.execute("SELECT query, response, timestamp FROM query_history WHERE user_id = ?", (user_id,))
|
137 |
+
history = c.fetchall()
|
138 |
+
history_json = json.dumps([{"query": query, "response": response, "timestamp": timestamp} for query, response, timestamp in history], indent=4)
|
139 |
+
b64 = base64.b64encode(history_json.encode()).decode() # Encode the history as base64
|
140 |
+
href = f'<a href="data:file/json;base64,{b64}" download="query_history.json">Download Query History</a>'
|
141 |
+
st.sidebar.markdown(href, unsafe_allow_html=True)
|
142 |
+
|
143 |
+
def main():
|
144 |
+
"""Main Streamlit application function."""
|
145 |
+
st.set_page_config("Chat with Documents")
|
146 |
+
st.header("ππ Chat with Documents ππ")
|
147 |
+
|
148 |
+
user_id = st.text_input("Enter your user ID:")
|
149 |
+
|
150 |
+
user_question = st.text_input("Ask a Question from the Documents")
|
151 |
+
|
152 |
+
if user_question and user_id:
|
153 |
+
response = user_input(user_question, user_id)
|
154 |
+
st.write("Reply: ", response)
|
155 |
+
|
156 |
+
with st.sidebar:
|
157 |
+
st.title("Menu:")
|
158 |
+
document_type = st.selectbox("Select Document Type", ["pdf", "docx", "txt"])
|
159 |
+
document = st.file_uploader(f"Upload your {document_type.upper()} Documents", accept_multiple_files=True)
|
160 |
+
if st.button("Submit & Process"):
|
161 |
+
with st.spinner("Processing..."):
|
162 |
+
try:
|
163 |
+
if document:
|
164 |
+
for doc in document:
|
165 |
+
doc_text = get_document_text(doc, document_type)
|
166 |
+
text_chunks = get_text_chunks(doc_text)
|
167 |
+
get_vector_store(text_chunks)
|
168 |
+
c.execute("INSERT INTO documents (document_type, document_content) VALUES (?, ?)",
|
169 |
+
(document_type, doc_text))
|
170 |
+
conn.commit()
|
171 |
+
st.success("Documents processed and stored in the database.")
|
172 |
+
else:
|
173 |
+
st.error("Please upload documents before processing.")
|
174 |
+
except Exception as e:
|
175 |
+
logging.error("Error processing documents: %s", e)
|
176 |
+
st.error(f"An error occurred: {e}")
|
177 |
+
|
178 |
+
# Display the query history in the sidebar
|
179 |
+
display_query_history(user_id)
|
180 |
+
|
181 |
+
# Add download button for query history
|
182 |
+
download_query_history(user_id)
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.22.0
|
2 |
+
google-generativeai==0.7.2
|
3 |
+
python-dotenv==1.0.0
|
4 |
+
langchain==0.2.6
|
5 |
+
PyPDF2==3.0.1
|
6 |
+
chromadb==0.5.3
|
7 |
+
faiss-cpu==1.7.2
|
8 |
+
langchain_google_genai==1.0.7
|
9 |
+
langchain_community==0.2.6
|