Vikrant26 commited on
Commit
faa955a
·
verified ·
1 Parent(s): d545daf

Upload 8 files

Browse files
Files changed (8) hide show
  1. .env +0 -0
  2. 01.jpeg +0 -0
  3. 02.jpeg +0 -0
  4. 03.jpeg +0 -0
  5. app.py +103 -0
  6. food_identification.ipynb +69 -0
  7. predict_food.ipynb +88 -0
  8. requirements.txt +6 -0
.env ADDED
File without changes
01.jpeg ADDED
02.jpeg ADDED
03.jpeg ADDED
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
3
+ import warnings
4
+ import requests
5
+ import gradio as gr
6
+
7
+ warnings.filterwarnings('ignore')
8
+
9
+ # Load the pre-trained Vision Transformer model and feature extractor
10
+ model_name = "google/vit-base-patch16-224"
11
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
12
+ model = ViTForImageClassification.from_pretrained(model_name)
13
+
14
+ # API key for the nutrition information
15
+ api_key = 'Place API key here'
16
+
17
+ def identify_image(image_path):
18
+ """Identify the food item in the image."""
19
+ image = Image.open(image_path)
20
+ inputs = feature_extractor(images=image, return_tensors="pt")
21
+ outputs = model(**inputs)
22
+ logits = outputs.logits
23
+ predicted_class_idx = logits.argmax(-1).item()
24
+ predicted_label = model.config.id2label[predicted_class_idx]
25
+ food_name = predicted_label.split(',')[0]
26
+ return food_name
27
+
28
+ def get_calories(food_name):
29
+ """Get the calorie information of the identified food item."""
30
+ api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name)
31
+ response = requests.get(api_url, headers={'X-Api-Key': api_key})
32
+ if response.status_code == requests.codes.ok:
33
+ nutrition_info = response.json()
34
+ else:
35
+ nutrition_info = {"Error": response.status_code, "Message": response.text}
36
+ return nutrition_info
37
+
38
+ def format_nutrition_info(nutrition_info):
39
+ """Format the nutritional information into an HTML table."""
40
+ if "Error" in nutrition_info:
41
+ return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
42
+
43
+ if len(nutrition_info) == 0:
44
+ return "No nutritional information found."
45
+
46
+ nutrition_data = nutrition_info[0]
47
+ table = f"""
48
+ <table border="1" style="width: 100%; border-collapse: collapse;">
49
+ <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
50
+ <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
51
+ <tr>
52
+ <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
53
+ <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
54
+ </tr>
55
+ <tr>
56
+ <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
57
+ <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
58
+ </tr>
59
+ <tr>
60
+ <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
61
+ <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
62
+ </tr>
63
+ <tr>
64
+ <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
65
+ <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
66
+ </tr>
67
+ <tr>
68
+ <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
69
+ <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
70
+ </tr>
71
+ <tr>
72
+ <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
73
+ <td></td><td></td>
74
+ </tr>
75
+ </table>
76
+ """
77
+ return table
78
+
79
+ def main_process(image_path):
80
+ """Identify the food item and fetch its calorie information."""
81
+ food_name = identify_image(image_path)
82
+ nutrition_info = get_calories(food_name)
83
+ formatted_nutrition_info = format_nutrition_info(nutrition_info)
84
+ return formatted_nutrition_info
85
+
86
+ # Define the Gradio interface
87
+ def gradio_interface(image):
88
+ formatted_nutrition_info = main_process(image)
89
+ return formatted_nutrition_info
90
+
91
+ # Create the Gradio UI
92
+ iface = gr.Interface(
93
+ fn=gradio_interface,
94
+ inputs=gr.Image(type="filepath"),
95
+ outputs="html",
96
+ title="Food Identification and Nutrition Info",
97
+ description="Upload an image of food to get nutritional information.",
98
+ allow_flagging="never" # Disable flagging
99
+ )
100
+
101
+ # Launch the Gradio app
102
+ if __name__ == "__main__":
103
+ iface.launch()
food_identification.ipynb ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Identified food: Granny Smith\n"
13
+ ]
14
+ }
15
+ ],
16
+ "source": [
17
+ "import torch\n",
18
+ "from PIL import Image\n",
19
+ "from transformers import ViTFeatureExtractor, ViTForImageClassification\n",
20
+ "import warnings\n",
21
+ "\n",
22
+ "warnings.filterwarnings('ignore')\n",
23
+ "\n",
24
+ "model_name = \"google/vit-base-patch16-224\"\n",
25
+ "feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)\n",
26
+ "model = ViTForImageClassification.from_pretrained(model_name)\n",
27
+ "\n",
28
+ "def identify_food(image_path):\n",
29
+ " \"\"\"Identify the food item in the image.\"\"\"\n",
30
+ " image = Image.open(image_path)\n",
31
+ " inputs = feature_extractor(images=image, return_tensors=\"pt\")\n",
32
+ " outputs = model(**inputs)\n",
33
+ " logits = outputs.logits\n",
34
+ " predicted_class_idx = logits.argmax(-1).item()\n",
35
+ " predicted_label = model.config.id2label[predicted_class_idx]\n",
36
+ " food_name = predicted_label.split(',')[0]\n",
37
+ " return food_name\n"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": null,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": []
46
+ }
47
+ ],
48
+ "metadata": {
49
+ "kernelspec": {
50
+ "display_name": "myenv",
51
+ "language": "python",
52
+ "name": "python3"
53
+ },
54
+ "language_info": {
55
+ "codemirror_mode": {
56
+ "name": "ipython",
57
+ "version": 3
58
+ },
59
+ "file_extension": ".py",
60
+ "mimetype": "text/x-python",
61
+ "name": "python",
62
+ "nbconvert_exporter": "python",
63
+ "pygments_lexer": "ipython3",
64
+ "version": "3.12.4"
65
+ }
66
+ },
67
+ "nbformat": 4,
68
+ "nbformat_minor": 2
69
+ }
predict_food.ipynb ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "ename": "TypeError",
10
+ "evalue": "'>' not supported between instances of 'str' and 'int'",
11
+ "output_type": "error",
12
+ "traceback": [
13
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
14
+ "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
15
+ "Cell \u001b[1;32mIn[5], line 56\u001b[0m\n\u001b[0;32m 54\u001b[0m test_food \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGranny Smith apple\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 55\u001b[0m nutrition_info \u001b[38;5;241m=\u001b[39m get_nutrition_info(test_food)\n\u001b[1;32m---> 56\u001b[0m analysis \u001b[38;5;241m=\u001b[39m \u001b[43manalyze_nutrition\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnutrition_info\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 57\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAnalysis for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtest_food\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m:\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 58\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mNutritional Data:\u001b[39m\u001b[38;5;124m\"\u001b[39m, analysis[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnutrition_data\u001b[39m\u001b[38;5;124m'\u001b[39m])\n",
16
+ "Cell \u001b[1;32mIn[5], line 34\u001b[0m, in \u001b[0;36manalyze_nutrition\u001b[1;34m(nutrition_info)\u001b[0m\n\u001b[0;32m 31\u001b[0m suggestions \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m 33\u001b[0m \u001b[38;5;66;03m# Analyze nutritional values and provide suggestions\u001b[39;00m\n\u001b[1;32m---> 34\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43mcalories\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m300\u001b[39;49m:\n\u001b[0;32m 35\u001b[0m suggestions\u001b[38;5;241m.\u001b[39mappend(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHigh in calories - Consider portion control\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 36\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fat_total_g \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m10\u001b[39m:\n",
17
+ "\u001b[1;31mTypeError\u001b[0m: '>' not supported between instances of 'str' and 'int'"
18
+ ]
19
+ }
20
+ ],
21
+ "source": [
22
+ "import requests\n",
23
+ "\n",
24
+ "api_key = 'jVjdskzcX1Fv3o5OFJPxbw==EHXvm2HiyPYoOm2p'\n",
25
+ "\n",
26
+ "def get_nutrition_info(food_name):\n",
27
+ " \"\"\"Get the nutritional information for the identified food item.\"\"\"\n",
28
+ " api_url = f'https://api.api-ninjas.com/v1/nutrition?query={food_name}'\n",
29
+ " response = requests.get(api_url, headers={'X-Api-Key': api_key})\n",
30
+ " if response.status_code == requests.codes.ok:\n",
31
+ " return response.json()\n",
32
+ " else:\n",
33
+ " return {\"Error\": response.status_code, \"Message\": response.text}\n",
34
+ "\n",
35
+ "def analyze_nutrition(nutrition_info):\n",
36
+ " \"\"\"Analyze the nutritional information and provide suggestions.\"\"\"\n",
37
+ " if \"Error\" in nutrition_info:\n",
38
+ " return f\"Error: {nutrition_info['Error']} - {nutrition_info['Message']}\"\n",
39
+ "\n",
40
+ " if len(nutrition_info) == 0:\n",
41
+ " return \"No nutritional information found for the given food item.\"\n",
42
+ "\n",
43
+ " nutrition_data = nutrition_info[0]\n",
44
+ " suggestions = []\n",
45
+ "\n",
46
+ " if nutrition_data['calories'] > 500:\n",
47
+ " suggestions.append(\"This food is high in calories. Consider portion control.\")\n",
48
+ " if nutrition_data['fat_total_g'] > 20:\n",
49
+ " suggestions.append(\"High in fat. Consider low-fat alternatives.\")\n",
50
+ " if nutrition_data['sugar_g'] > 20:\n",
51
+ " suggestions.append(\"High in sugar. Consider limiting sugar intake.\")\n",
52
+ "\n",
53
+ " return {\n",
54
+ " \"nutrition_data\": nutrition_data,\n",
55
+ " \"suggestions\": suggestions\n",
56
+ " }\n"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "metadata": {},
63
+ "outputs": [],
64
+ "source": []
65
+ }
66
+ ],
67
+ "metadata": {
68
+ "kernelspec": {
69
+ "display_name": "myenv",
70
+ "language": "python",
71
+ "name": "python3"
72
+ },
73
+ "language_info": {
74
+ "codemirror_mode": {
75
+ "name": "ipython",
76
+ "version": 3
77
+ },
78
+ "file_extension": ".py",
79
+ "mimetype": "text/x-python",
80
+ "name": "python",
81
+ "nbconvert_exporter": "python",
82
+ "pygments_lexer": "ipython3",
83
+ "version": "3.12.4"
84
+ }
85
+ },
86
+ "nbformat": 4,
87
+ "nbformat_minor": 2
88
+ }
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio>=3.39
2
+ transformers>=4.34.0
3
+ torch>=2.1.0
4
+ torchvision>=0.16.0
5
+ requests>=2.31.0
6
+ python-dotenv>=1.0.0