Vinay15 commited on
Commit
4f6d4b8
·
verified ·
1 Parent(s): f627171

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -4,17 +4,17 @@ from PIL import Image
4
  import gradio as gr
5
  import os
6
 
7
- # Load the OCR model and tokenizer
8
  tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
9
  model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True,
10
  low_cpu_mem_usage=True,
11
  pad_token_id=tokenizer.eos_token_id).eval()
12
 
13
- # Ensure everything is on CPU
14
  device = torch.device('cpu')
15
  model = model.to(device)
16
 
17
- # Function to perform OCR on the image file
18
  def perform_ocr(image_file_path):
19
  # Open the image using PIL
20
  image = Image.open(image_file_path)
@@ -25,7 +25,7 @@ def perform_ocr(image_file_path):
25
 
26
  # Use torch.no_grad() to avoid unnecessary memory usage
27
  with torch.no_grad():
28
- # Perform OCR using the model (pass the file path of the saved image)
29
  result = model.chat(tokenizer, temp_image_path, ocr_type='ocr')
30
 
31
  # Clean up the temporary image file
@@ -34,7 +34,7 @@ def perform_ocr(image_file_path):
34
  # Return the extracted text
35
  return result
36
 
37
- # Create the Gradio interface for file upload and OCR
38
  iface = gr.Interface(fn=perform_ocr, inputs="file", outputs="text",
39
  title="OCR Application", description="Upload an image to extract text.")
40
 
 
4
  import gradio as gr
5
  import os
6
 
7
+ # Load the OCR model and tokenizer, trust_remote_code=True allows custom model logic
8
  tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
9
  model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True,
10
  low_cpu_mem_usage=True,
11
  pad_token_id=tokenizer.eos_token_id).eval()
12
 
13
+ # Move model to CPU
14
  device = torch.device('cpu')
15
  model = model.to(device)
16
 
17
+ # Function to perform OCR on an image file
18
  def perform_ocr(image_file_path):
19
  # Open the image using PIL
20
  image = Image.open(image_file_path)
 
25
 
26
  # Use torch.no_grad() to avoid unnecessary memory usage
27
  with torch.no_grad():
28
+ # Perform OCR using the model on CPU (pass the file path of the saved image)
29
  result = model.chat(tokenizer, temp_image_path, ocr_type='ocr')
30
 
31
  # Clean up the temporary image file
 
34
  # Return the extracted text
35
  return result
36
 
37
+ # Gradio interface for file upload and OCR
38
  iface = gr.Interface(fn=perform_ocr, inputs="file", outputs="text",
39
  title="OCR Application", description="Upload an image to extract text.")
40