Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,26 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Load the tokenizer and model
|
6 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Define the OCR function
|
11 |
def perform_ocr(image):
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import AutoModel, AutoTokenizer
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Check GPU availability
|
7 |
+
if torch.cuda.is_available():
|
8 |
+
print("CUDA is available! GPU is present.")
|
9 |
+
print(f"Number of GPUs: {torch.cuda.device_count()}")
|
10 |
+
print(f"GPU Name: {torch.cuda.get_device_name(0)}")
|
11 |
+
else:
|
12 |
+
print("CUDA is not available. Running on CPU.")
|
13 |
+
|
14 |
# Load the tokenizer and model
|
15 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
16 |
+
|
17 |
+
# Initialize the model
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
20 |
+
model = model.eval().cuda()
|
21 |
+
else:
|
22 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, pad_token_id=tokenizer.eos_token_id)
|
23 |
+
model = model.eval() # Keep model on CPU
|
24 |
|
25 |
# Define the OCR function
|
26 |
def perform_ocr(image):
|