Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,23 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModel
|
2 |
|
3 |
-
|
4 |
-
try:
|
5 |
-
# Load the tokenizer with the specific revision
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
7 |
-
'stepfun-ai/GOT-OCR2_0',
|
8 |
-
revision='cf6b7386bc89a54f09785612ba74cb12de6fa17c', # Pin the specific revision
|
9 |
-
trust_remote_code=True
|
10 |
-
)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
print(f"An error occurred while loading the model and tokenizer: {e}")
|
23 |
-
return None, None
|
24 |
|
25 |
-
# Example usage
|
26 |
if __name__ == "__main__":
|
27 |
-
|
28 |
-
if model and tokenizer:
|
29 |
-
print("Model and tokenizer loaded successfully!")
|
30 |
-
else:
|
31 |
-
print("Failed to load model and tokenizer.")
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
|
4 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load model and tokenizer
|
7 |
+
try:
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', revision='cf6b7386bc89a54f09785612ba74cb12de6fa17c', trust_remote_code=True)
|
9 |
+
model = AutoModel.from_pretrained('stepfun-ai/GOT-OCR2_0', revision='cf6b7386bc89a54f09785612ba74cb12de6fa17c', trust_remote_code=True)
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error loading model and tokenizer: {e}")
|
12 |
|
13 |
+
@app.route('/predict', methods=['POST'])
|
14 |
+
def predict():
|
15 |
+
# Assuming you send image data in the request
|
16 |
+
data = request.json
|
17 |
+
# Add your model inference logic here
|
18 |
+
# e.g., model.forward(data)
|
19 |
|
20 |
+
return jsonify({"message": "Prediction made successfully!"})
|
|
|
|
|
21 |
|
|
|
22 |
if __name__ == "__main__":
|
23 |
+
app.run(host='0.0.0.0', port=5000) # Adjust port if necessary
|
|
|
|
|
|
|
|