Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Step 1: Import necessary libraries
|
2 |
+
import gradio as gr
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
6 |
+
from datasets import load_dataset
|
7 |
+
import soundfile as sf
|
8 |
+
|
9 |
+
# Step 2: Load the models and the pronunciation dictionary
|
10 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
11 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
12 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
13 |
+
|
14 |
+
# Load pronunciation dictionary from JSON file
|
15 |
+
with open("pronunciation_dict.json", "r") as f:
|
16 |
+
pronunciation_dict = json.load(f)
|
17 |
+
|
18 |
+
# Function to preprocess the input text
|
19 |
+
def preprocess_text(text):
|
20 |
+
for term, phonetic in pronunciation_dict.items():
|
21 |
+
text = text.replace(term, phonetic)
|
22 |
+
return text
|
23 |
+
|
24 |
+
# Step 3: Define the TTS function
|
25 |
+
def text_to_speech(input_text):
|
26 |
+
# Preprocess the text
|
27 |
+
processed_text = preprocess_text(input_text)
|
28 |
+
|
29 |
+
# Convert the processed text to model inputs
|
30 |
+
inputs = processor(text=processed_text, return_tensors="pt")
|
31 |
+
|
32 |
+
# Load xvector embeddings from dataset for speaker voice characteristics
|
33 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
34 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
35 |
+
|
36 |
+
# Generate speech using the model and vocoder
|
37 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
38 |
+
|
39 |
+
# Save the generated speech as a .wav file
|
40 |
+
output_file = "speech_output.wav"
|
41 |
+
sf.write(output_file, speech.numpy(), samplerate=16000)
|
42 |
+
|
43 |
+
return output_file
|
44 |
+
|
45 |
+
# Step 4: Create Gradio interface
|
46 |
+
iface = gr.Interface(fn=text_to_speech,
|
47 |
+
inputs="text",
|
48 |
+
outputs="audio",
|
49 |
+
title="Text-to-Speech (TTS) Application",
|
50 |
+
description="Enter text with technical jargon for TTS conversion.")
|
51 |
+
|
52 |
+
# Step 5: Launch the app
|
53 |
+
iface.launch(share=True)
|