Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,45 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load your model and tokenizer from Hugging Face
|
5 |
model_name = "orYx-models/finetuned-tiny-llama-medical-papers"
|
6 |
-
token = "Tinyllama_secret" # Replace <your_token> with your actual Hugging Face
|
7 |
-
model =
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
9 |
|
10 |
# Define the pipeline with your model
|
11 |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
12 |
|
13 |
-
|
14 |
|
15 |
-
if
|
16 |
-
|
17 |
-
st.json(out)
|
|
|
1 |
+
from time import perf_counter
|
2 |
import streamlit as st
|
3 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig
|
4 |
+
|
5 |
+
def generate_response(user_input):
|
6 |
+
prompt = formatted_prompt(user_input)
|
7 |
+
|
8 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
9 |
+
generation_config = GenerationConfig(
|
10 |
+
penalty_alpha=0.6,
|
11 |
+
do_sample=True,
|
12 |
+
top_k=5,
|
13 |
+
temperature=0.5,
|
14 |
+
repetition_penalty=1.2,
|
15 |
+
max_new_tokens=500,
|
16 |
+
pad_token_id=tokenizer.eos_token_id
|
17 |
+
)
|
18 |
+
start_time = perf_counter()
|
19 |
+
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
21 |
+
|
22 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
23 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
output_time = perf_counter() - start_time
|
25 |
+
st.write(response)
|
26 |
+
st.write(f"Time taken for inference: {round(output_time, 2)} seconds")
|
27 |
+
|
28 |
+
@st.cache(allow_output_mutation=True)
|
29 |
+
def load_model_and_tokenizer(model_name, token):
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, token=token)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
|
32 |
+
return model, tokenizer
|
33 |
|
34 |
# Load your model and tokenizer from Hugging Face
|
35 |
model_name = "orYx-models/finetuned-tiny-llama-medical-papers"
|
36 |
+
token = "Tinyllama_secret" # Replace <your_token> with your actual Hugging Face Spaces secret
|
37 |
+
model, tokenizer = load_model_and_tokenizer(model_name, token)
|
|
|
38 |
|
39 |
# Define the pipeline with your model
|
40 |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
41 |
|
42 |
+
user_input = st.text_area("Enter some text:")
|
43 |
|
44 |
+
if user_input:
|
45 |
+
generate_response(user_input)
|
|