Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
-
# Load the processor and model
|
7 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
8 |
-
|
9 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", config=config)
|
10 |
|
11 |
# Streamlit app
|
12 |
st.title("Image Description Generator")
|
@@ -37,10 +36,6 @@ if uploaded_file is not None:
|
|
37 |
messages, tokenize=False, add_generation_prompt=True
|
38 |
)
|
39 |
|
40 |
-
# Debugging: Display the generated text
|
41 |
-
st.write("Generated text for processing:")
|
42 |
-
st.write(text)
|
43 |
-
|
44 |
# Pass the image to the processor
|
45 |
inputs = processor(
|
46 |
text=[text],
|
@@ -50,10 +45,6 @@ if uploaded_file is not None:
|
|
50 |
)
|
51 |
inputs = inputs.to("cpu")
|
52 |
|
53 |
-
# Debugging: Display the inputs
|
54 |
-
st.write("Inputs for the model:")
|
55 |
-
st.write(inputs)
|
56 |
-
|
57 |
# Inference: Generation of the output
|
58 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
59 |
generated_ids_trimmed = [
|
@@ -63,9 +54,5 @@ if uploaded_file is not None:
|
|
63 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
64 |
)
|
65 |
|
66 |
-
# Debugging: Display the raw output text
|
67 |
-
st.write("Raw output text:")
|
68 |
-
st.write(output_text)
|
69 |
-
|
70 |
st.write("Description:")
|
71 |
-
st.write(output_text
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
+
# Load the processor and model directly
|
7 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
8 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
|
|
9 |
|
10 |
# Streamlit app
|
11 |
st.title("Image Description Generator")
|
|
|
36 |
messages, tokenize=False, add_generation_prompt=True
|
37 |
)
|
38 |
|
|
|
|
|
|
|
|
|
39 |
# Pass the image to the processor
|
40 |
inputs = processor(
|
41 |
text=[text],
|
|
|
45 |
)
|
46 |
inputs = inputs.to("cpu")
|
47 |
|
|
|
|
|
|
|
|
|
48 |
# Inference: Generation of the output
|
49 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
50 |
generated_ids_trimmed = [
|
|
|
54 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
55 |
)
|
56 |
|
|
|
|
|
|
|
|
|
57 |
st.write("Description:")
|
58 |
+
st.write(output_text)
|