import streamlit as st from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from PIL import Image import torch # Load the processor and model directly processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") # Streamlit app st.title("Image Description Generator") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Open the image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("Generating description...") messages = [ { "role": "user", "content": [ { "type": "image", "image": image, }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Pass the image to the processor inputs = processor( text=[text], images=[image], padding=True, return_tensors="pt", ) inputs = inputs.to("cpu") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) st.write("Description:") st.write(output_text)