|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ANLS - Average Normalized Levenshtein Similarity""" |
|
|
|
import datasets |
|
import evaluate |
|
|
|
from compute_score import compute_score |
|
|
|
|
|
_CITATION = """\ |
|
@article{, |
|
title = {Binary codes capable of correcting deletions, insertions, and reversals}, |
|
journal = {Soviet physics doklady}, |
|
volume = {10}, |
|
number = {8}, |
|
pages = {707--710}, |
|
year = {1966}, |
|
url = {https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf}, |
|
author = {V. I. Levenshtein}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ANLS refer to the average normalized Levenshtein similarity. |
|
""" |
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Computes Average Normalized Levenshtein Similarity (ANLS). |
|
Args: |
|
predictions: List of question-answers dictionaries with the following key-values: |
|
- 'question_id': id of the question-answer pair as given in the references (see below) |
|
- 'prediction_text': the text of the answer |
|
references: List of question-answers dictionaries with the following key-values: |
|
- 'question_id': id of the question-answer pair (see above), |
|
- 'answers': list of possible texts for the answer, as a list of strings |
|
|
|
Returns: |
|
'anls': The ANLS score of predicted tokens versus the gold answer |
|
Examples: |
|
>>> predictions = [{'prediction_text': 'Denver Broncos', 'question_id': '56e10a3be3433e1400422b22'}] |
|
>>> references = [{'answers': ['Denver Broncos', 'Denver R. Broncos'], 'question_id': '56e10a3be3433e1400422b22'}] |
|
>>> anls_metric = evaluate.load("anls") |
|
>>> results = anls_metric.compute(predictions=predictions, references=references) |
|
>>> print(results) |
|
{'anls_score': 100.0} |
|
""" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class Anls(evaluate.Metric): |
|
def _info(self): |
|
return evaluate.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"predictions": {"question_id": datasets.Value("string"), |
|
"prediction_text": datasets.Value("string")}, |
|
"references": { |
|
"question_id": datasets.Value("string"), |
|
"answers": datasets.features.Sequence(datasets.Value("string")), |
|
}, |
|
} |
|
) |
|
) |
|
|
|
def _compute(self, predictions, references): |
|
ground_truths = {x['question_id']: x['answers'] for x in references} |
|
predictions = {x['question_id']: x['prediction_text'] for x in predictions} |
|
anls_score = compute_score(predictions=predictions, ground_truths=ground_truths) |
|
return {"anls_score": anls_score} |
|
|