#loading tfidf dataset import pandas as pd newsdf_sample = pd.read_excel("complete_tfidf_25.xlsx",engine="openpyxl") print("file size",len(newsdf_sample)) #preprocessing for better tokenization (needed for tfidf) import nltk nltk.download('stopwords') nltk.download('wordnet') nltk.download('omw-1.4') from nltk.corpus import stopwords stopwords_list = stopwords.words('english') stopwords_list def process_row(row): import re from textblob import Word from string import punctuation from nltk.stem.snowball import SnowballStemmer #Mail address row = re.sub('(\S+@\S+)(com|\s+com)', ' ', row) #Username row = re.sub('(\S+@\S+)', ' ', row) # print('username',len(row.split())) #punctuation punctuation = punctuation + '\n' + '—“,”‘-’' + '0123456789' +"\t" row = ''.join(word for word in row if word not in punctuation) # print('punctuation',len(row.split())) # print('punctuation',row) #Lower case row = row.lower() # print('lower',len(row.split())) #Stopwords stop = stopwords_list row = ' '.join(word for word in row.split() if word not in stop ) # print('stop',len(row.split())) # print('stop',row) # Lemma row = " ".join([Word(word).lemmatize() for word in row.split()]) # print('lemma',len(row.split())) # print('lemma',row) #Stemming stemmer = SnowballStemmer(language='english') row = " ".join([stemmer.stem(word) for word in row.split()]) # print('stem',len(row.split())) # print('stem',row) #Extra whitespace row = re.sub('\s{1,}', ' ', row) # print('extra white',len(row.split())) row = " ".join([word for word in row.split() if len(word) > 2]) return row import pickle kmeans_tfidf = pickle.load( open( "kmeans_tfidf_25_complete.p", "rb" ) ) vectorizer = pickle.load(open("tfidf_vectorizer_complete.p","rb")) import matplotlib.pyplot as plt from wordcloud import WordCloud dictt_cluster_words={} for i in range(0,20): # print(i) temp_df = newsdf_sample[newsdf_sample.exp25==i] text_list= temp_df["tfidf_cleaned"].values text_list = [element for element in text_list if str(element) != "nan"] single_text = " ".join(text_list) wordcloud = WordCloud(width = 1000, height = 500, , max_words=1000).generate(single_text) dictt_cluster_words[i] = wordcloud.words_ #summarization model from transformers import PegasusForConditionalGeneration, PegasusTokenizer from transformers import pipeline import torch model_name = 'google/pegasus-cnn_dailymail' device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device) def return_summary(text): src_text =[text] batch = tokenizer(src_text, truncation=True, padding="longest", return_tensors="pt").to(device) translated = model.generate(**batch) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) tgt_text= tgt_text[0].replace(""," ") return tgt_text ############ def return_squad_answer(question, relevant_text): qa_pipeline = pipeline( "question-answering", model="mvonwyl/distilbert-base-uncased-finetuned-squad2",#csarron/bert-base-uncased-squad-v1", tokenizer="mvonwyl/distilbert-base-uncased-finetuned-squad2",#csarron/bert-base-uncased-squad-v1" ) predictions = qa_pipeline({ 'context': relevant_text, 'question': question }) print(predictions) return predictions["answer"] #keyword based cluster selection would be better #document selection based on tfidf vector import numpy as np import math def l2_norm(a): return math.sqrt(np.dot(a,a)) def cosine_similarity(a,b): return abs(np.dot(a,b)/ (l2_norm(a) * l2_norm(b))) def return_selected_cluster(ques): ques_clean = process_row(ques) cluster_selected =-1 cluster_score =0 for clus_id in dictt_cluster_words: score_temp=0 for word in ques_clean.split(): dictt_temp = dictt_cluster_words[clus_id] if word in dictt_temp: score_temp+=dictt_temp[word] if score_temp>cluster_score: cluster_selected = clus_id cluster_score = score_temp return cluster_selected def get_summary_answer(Question): print("question: ", Question) cluster_selected = return_selected_cluster(Question) temp_df = newsdf_sample[newsdf_sample.exp25==cluster_selected] tfidf_ques = vectorizer.transform([process_row(Question)]).todense() cosine_score = [] for sent in temp_df["tfidf_cleaned"].values: val = vectorizer.transform([sent]).todense() # print(np.array(tfidf_ques)[0], np.array(val)[0]) cos_score = cosine_similarity(np.array(tfidf_ques)[0],np.array(val)[0]) cosine_score.append(cos_score) temp_df["cos_score"] = cosine_score temp_df = temp_df.sort_values(by=['cos_score'], ascending=False) relevant_docs = temp_df["cleaned_doc"][:20] relevant_text = " ".join(relevant_docs) print("relevant_text", relevant_text) # print("summary - ",return_summary(relevant_text)) # print("squad answer- ",return_squad_answer(ques, relevant_text)) summary = return_summary(relevant_text) squad_answer = return_squad_answer(Question, relevant_text) relevant_text = " ".join(relevant_text.split()[:min(250,len(relevant_text.split()))]) return relevant_text, summary, squad_answer import gradio as gr iface = gr.Interface(fn = get_summary_answer, inputs = gr.Textbox(type="text", label="Type your question"), # outputs = ["text", "text"], outputs = [ gr.Textbox(type="text", value=1, label="Relevant text"), gr.Textbox(type="text", value=2, label="Answer from Generative Model"), gr.Textbox(type="text", value=3, label="Answer from SQuAD model"), ], title = "20NewsGroup_QA", description ="Returns answer from 20NewsGroup dataset") iface.launch(inline = False, debug = True)