Spaces:
Runtime error
Runtime error
Delete myutils/finetuning.py
Browse files- myutils/finetuning.py +0 -410
myutils/finetuning.py
DELETED
@@ -1,410 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
finetuning_pipeline.py
|
3 |
-
|
4 |
-
Collects a number of methods in classes to streamline the finetuning of model embeddings
|
5 |
-
|
6 |
-
|
7 |
-
#### Fine-tuning Steps
|
8 |
-
|
9 |
-
1. Prepare Train, Val and Test Data
|
10 |
-
- if needed, chunk data to get a list of LC Documents
|
11 |
-
- Split the list into train, val and test sub-groups
|
12 |
-
- For each sub-group, use an LLM to generate a list of POSITIVE question, context pairs.
|
13 |
-
- This is done by passing the context to the LLM along with a prompt to generate `n_questions` number of questions; the questions are extracted from the LLM output and paired with the underlying context. Note that each context will have more than one question paired with it.
|
14 |
-
- Write out the list of question, context pairs for train, val and test sub-groups into a jsonl file for future reference.
|
15 |
-
- The train sub-group is loaded into a HF Dataset object for use in training.
|
16 |
-
2. Data Loader
|
17 |
-
- Set up data loader
|
18 |
-
- This includes the training data along with batch size information.
|
19 |
-
3. Load model to be finetuned
|
20 |
-
- Use HF model name to load model
|
21 |
-
4. Set up loss function
|
22 |
-
- concept of inner loss: MultipleNegativesRankingLoss
|
23 |
-
- wrap inner loss in overall loss: MatryoshkaLoss
|
24 |
-
5. Set up finetuning pipeline
|
25 |
-
- This includes data, model, loss and hyperparameters
|
26 |
-
- Hyperparameters include number of epochs, warmup, etc.
|
27 |
-
6. Run the finetuning pipeline and get modified model embeddings
|
28 |
-
- save these embeddings
|
29 |
-
- see if these can be loaded onto HF
|
30 |
-
- see if these can be downloaded from HF
|
31 |
-
7. Validation Loss
|
32 |
-
- run assessment on val sub-group
|
33 |
-
|
34 |
-
|
35 |
-
"""
|
36 |
-
|
37 |
-
# imports
|
38 |
-
from operator import itemgetter
|
39 |
-
import pandas as pd
|
40 |
-
from typing import List
|
41 |
-
import uuid
|
42 |
-
import random
|
43 |
-
import tqdm
|
44 |
-
import re
|
45 |
-
import json
|
46 |
-
import pandas as pd
|
47 |
-
|
48 |
-
from torch.utils.data import DataLoader
|
49 |
-
|
50 |
-
from sentence_transformers import SentenceTransformer
|
51 |
-
from sentence_transformers import InputExample
|
52 |
-
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
|
53 |
-
from sentence_transformers.evaluation import InformationRetrievalEvaluator
|
54 |
-
|
55 |
-
from langchain_community.vectorstores import FAISS
|
56 |
-
from langchain_core.documents import Document
|
57 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
58 |
-
from langchain_core.prompts import ChatPromptTemplate
|
59 |
-
from langchain_openai import ChatOpenAI
|
60 |
-
from langchain_core.documents import Document
|
61 |
-
|
62 |
-
|
63 |
-
class GenerateQuestionsForContexts:
|
64 |
-
def __init__(self,
|
65 |
-
qa_chat_model_name="gpt-4o-mini",
|
66 |
-
n_questions=3):
|
67 |
-
|
68 |
-
self.qa_chat_model_name = qa_chat_model_name
|
69 |
-
# regex pattern used to extract questions from LLM response
|
70 |
-
# first group is question number - an integer - followed by a period
|
71 |
-
# second group is any character that follows this
|
72 |
-
self.regex_pattern = r'(^\d+).(.+)'
|
73 |
-
self.n_questions = n_questions
|
74 |
-
|
75 |
-
self.set_up_chat_model()
|
76 |
-
self.set_up_question_generation_chain()
|
77 |
-
return
|
78 |
-
|
79 |
-
def get_unique_id(self, id_set):
|
80 |
-
"""
|
81 |
-
Generate unique id not present in input set of ids
|
82 |
-
Input
|
83 |
-
a set of unique identifiers
|
84 |
-
Returns
|
85 |
-
a new unique id not in input set
|
86 |
-
updated input set of ids incl the newly generated id
|
87 |
-
"""
|
88 |
-
id = str(uuid.uuid4())
|
89 |
-
while id in id_set:
|
90 |
-
id = str(uuid.uuid4())
|
91 |
-
id_set.add(id)
|
92 |
-
return id, id_set
|
93 |
-
|
94 |
-
def set_up_chat_model(self):
|
95 |
-
self.qa_chat_model = ChatOpenAI(
|
96 |
-
model=self.qa_chat_model_name,
|
97 |
-
temperature=0
|
98 |
-
)
|
99 |
-
return self
|
100 |
-
|
101 |
-
def set_up_question_generation_chain(self):
|
102 |
-
qa_prompt = """\
|
103 |
-
Given the following context, you must generate questions based on only the provided context.
|
104 |
-
|
105 |
-
You are to generate {n_questions} questions which should be provided in the following format:
|
106 |
-
|
107 |
-
1. QUESTION #1
|
108 |
-
2. QUESTION #2
|
109 |
-
...
|
110 |
-
|
111 |
-
Context:
|
112 |
-
{context}
|
113 |
-
"""
|
114 |
-
qa_prompt_template = ChatPromptTemplate.from_template(qa_prompt)
|
115 |
-
self.question_generation_chain = qa_prompt_template | self.qa_chat_model
|
116 |
-
return self
|
117 |
-
|
118 |
-
def create_questions(self, documents, n_questions):
|
119 |
-
questions = {}
|
120 |
-
relevant_docs = {}
|
121 |
-
|
122 |
-
q_id_set = set()
|
123 |
-
for document in tqdm.tqdm(documents): # note tqdm.tqdm (NOT just tqdm as in original notebook)
|
124 |
-
this_question_set = \
|
125 |
-
self.question_generation_chain.invoke(
|
126 |
-
{
|
127 |
-
'context': document.page_content,
|
128 |
-
'n_questions': n_questions
|
129 |
-
}
|
130 |
-
)
|
131 |
-
for question in this_question_set.content.split("\n"):
|
132 |
-
if len(question) > 0:
|
133 |
-
try:
|
134 |
-
q_id, q_id_set = self.get_unique_id(q_id_set)
|
135 |
-
matched_pattern = re.search(self.regex_pattern, question) # regex search for n. <question>
|
136 |
-
if len(matched_pattern.group(2)) > 0:
|
137 |
-
questions[q_id] = matched_pattern.group(2).strip() # extraction of question string
|
138 |
-
relevant_docs[q_id] = [document.metadata["id"]]
|
139 |
-
except Exception:
|
140 |
-
continue
|
141 |
-
return questions, relevant_docs
|
142 |
-
|
143 |
-
|
144 |
-
class PrepareDataForFinetuning(GenerateQuestionsForContexts):
|
145 |
-
def __init__(self,
|
146 |
-
chunk_size=None, chunk_overlap=None, len_function=None,
|
147 |
-
lcdocuments=None, run_optional_text_splitter=False,
|
148 |
-
all_splits=None, train_val_test_size=[10, 5, 5],
|
149 |
-
train_val_test_split_type='random',
|
150 |
-
random_seed=69, qa_chat_model_name="gpt-4o-mini",
|
151 |
-
n_questions=2, batch_size=5):
|
152 |
-
|
153 |
-
super().__init__(qa_chat_model_name=qa_chat_model_name,
|
154 |
-
n_questions=n_questions)
|
155 |
-
|
156 |
-
self.chunk_size = chunk_size
|
157 |
-
self.chunk_overlap = chunk_overlap
|
158 |
-
self.len_function = len_function
|
159 |
-
|
160 |
-
self.lcdocuments = lcdocuments
|
161 |
-
self.run_optional_text_splitter = run_optional_text_splitter
|
162 |
-
|
163 |
-
self.all_doc_splits = all_splits
|
164 |
-
|
165 |
-
self.train_val_test_size = train_val_test_size
|
166 |
-
self.n_train = self.train_val_test_size[0]
|
167 |
-
self.n_val = self.train_val_test_size[1]
|
168 |
-
self.n_test = self.train_val_test_size[2]
|
169 |
-
self.train_val_test_split_type = train_val_test_split_type
|
170 |
-
|
171 |
-
self.random_seed = random_seed
|
172 |
-
self.batch_size = batch_size
|
173 |
-
return
|
174 |
-
|
175 |
-
def optional_text_splitter(self):
|
176 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
177 |
-
chunk_size = self.chunk_size,
|
178 |
-
chunk_overlap = self.chunk_overlap,
|
179 |
-
length_function = self.len_function
|
180 |
-
)
|
181 |
-
self.all_doc_splits = text_splitter.split_documents(self.lcdocuments.load())
|
182 |
-
return self
|
183 |
-
|
184 |
-
def attach_unique_ids_to_docs(self):
|
185 |
-
id_set = set()
|
186 |
-
for docsplit in self.all_doc_splits:
|
187 |
-
id, id_set = self.get_unique_id(id_set)
|
188 |
-
docsplit.metadata["id"] = id
|
189 |
-
return self
|
190 |
-
|
191 |
-
def simple_train_val_test_splits(self):
|
192 |
-
self.training_splits = self.all_doc_splits[:self.n_train]
|
193 |
-
self.val_splits = self.all_doc_splits[self.n_train:self.n_train+self.n_val]
|
194 |
-
self.test_splits = self.all_doc_splits[self.n_train+self.n_val:]
|
195 |
-
return self
|
196 |
-
|
197 |
-
def randomized_train_val_test_splits(self):
|
198 |
-
# set the same seed to be able to replicate the result of
|
199 |
-
# random shuffle below
|
200 |
-
random.seed(self.random_seed)
|
201 |
-
|
202 |
-
# randomly orders the elements in the list training_documents
|
203 |
-
randomly_ordered_documents = self.all_doc_splits.copy()
|
204 |
-
random.shuffle(randomly_ordered_documents)
|
205 |
-
|
206 |
-
# assign slices to training, val and test
|
207 |
-
self.training_splits = randomly_ordered_documents[:self.n_train]
|
208 |
-
self.val_splits = randomly_ordered_documents[self.n_train: self.n_train+self.n_val]
|
209 |
-
self.test_splits = randomly_ordered_documents[self.n_train+self.n_val:]
|
210 |
-
return self
|
211 |
-
|
212 |
-
def get_all_questions(self):
|
213 |
-
self.training_questions, self.training_relevant_contexts = \
|
214 |
-
self.create_questions(documents=self.training_splits, n_questions=self.n_questions)
|
215 |
-
self.val_questions, self.val_relevant_contexts = \
|
216 |
-
self.create_questions(documents=self.val_splits, n_questions=self.n_questions)
|
217 |
-
self.test_questions, self.test_relevant_contexts = \
|
218 |
-
self.create_questions(documents=self.test_splits, n_questions=self.n_questions)
|
219 |
-
return self
|
220 |
-
|
221 |
-
def save_dataset_to_jsonl(self, splits, questions, relevant_contexts, jsonl_filename):
|
222 |
-
"""
|
223 |
-
NOTE: Each `jsonl` file has a single line! This is a nested JSON structure.
|
224 |
-
Primary keys for each file are `questions`, `relevant_contexts` and `corpus`.
|
225 |
-
1. Each `question` element is a json object with a key id for the
|
226 |
-
question and the string corresp to question as the value.
|
227 |
-
2. Each `relevant_contexts` element is a json object with key id
|
228 |
-
corresponding to a question id and value corresponding to a unique id for the context
|
229 |
-
3. Each `corpus` element is a json object with key id
|
230 |
-
corresponding to a unique context id and value being the context string.
|
231 |
-
"""
|
232 |
-
corpus = {item.metadata["id"] : item.page_content for item in splits}
|
233 |
-
dataset_dict = {
|
234 |
-
"questions" : questions,
|
235 |
-
"relevant_contexts" : relevant_contexts,
|
236 |
-
"corpus" : corpus
|
237 |
-
}
|
238 |
-
with open(jsonl_filename, "w") as f:
|
239 |
-
json.dump(dataset_dict, f)
|
240 |
-
return dataset_dict
|
241 |
-
|
242 |
-
def save_train_val_test_dataset_to_jsonl(self):
|
243 |
-
self.train_dataset = \
|
244 |
-
self.save_dataset_to_jsonl(self.training_splits,
|
245 |
-
self.training_questions,
|
246 |
-
self.training_relevant_contexts,
|
247 |
-
jsonl_filename='./data/finetuning_data/training_dataset.jsonl')
|
248 |
-
|
249 |
-
self.val_dataset = \
|
250 |
-
self.save_dataset_to_jsonl(self.val_splits,
|
251 |
-
self.val_questions,
|
252 |
-
self.val_relevant_contexts,
|
253 |
-
jsonl_filename='./data/finetuning_data/val_dataset.jsonl')
|
254 |
-
|
255 |
-
self.test_dataset = \
|
256 |
-
self.save_dataset_to_jsonl(self.test_splits,
|
257 |
-
self.test_questions,
|
258 |
-
self.test_relevant_contexts,
|
259 |
-
jsonl_filename='./data/finetuning_data/test_dataset.jsonl')
|
260 |
-
return self
|
261 |
-
|
262 |
-
def run_all_prep_data(self):
|
263 |
-
# if docs are passed in pre-chunking, then split docs
|
264 |
-
if self.run_optional_text_splitter is True:
|
265 |
-
self.optional_text_splitter()
|
266 |
-
|
267 |
-
# each chunk i.e., context gets a unique id
|
268 |
-
self.attach_unique_ids_to_docs()
|
269 |
-
|
270 |
-
# split into train, val and test - either random or simple slicing
|
271 |
-
if self.train_val_test_split_type.upper() == 'RANDOM':
|
272 |
-
self.randomized_train_val_test_splits()
|
273 |
-
else:
|
274 |
-
self.simple_train_val_test_splits()
|
275 |
-
|
276 |
-
# generate questions for each context
|
277 |
-
# this step involves large number of LLM calls
|
278 |
-
self.get_all_questions()
|
279 |
-
|
280 |
-
# save train, val and test datasets in jsonl format
|
281 |
-
self.save_train_val_test_dataset_to_jsonl()
|
282 |
-
return self
|
283 |
-
|
284 |
-
|
285 |
-
class FineTuneModel:
|
286 |
-
def __init__(self,
|
287 |
-
train_data,
|
288 |
-
val_data,
|
289 |
-
batch_size,
|
290 |
-
base_model_id='Snowflake/snowflake-arctic-embed-m',
|
291 |
-
matryoshka_dimensions=[768, 512, 256, 128, 64],
|
292 |
-
number_of_training_epochs=5,
|
293 |
-
finetuned_model_output_path='finetuned_arctic',
|
294 |
-
evaluation_steps = 50):
|
295 |
-
self.train_data = train_data
|
296 |
-
self.val_data = val_data
|
297 |
-
self.batch_size = batch_size
|
298 |
-
|
299 |
-
self.base_model_id = base_model_id
|
300 |
-
self.matryoshka_dimensions = matryoshka_dimensions
|
301 |
-
self.number_of_training_epochs = number_of_training_epochs
|
302 |
-
self.finetuned_model_output_path = finetuned_model_output_path
|
303 |
-
self.evaluation_steps = evaluation_steps
|
304 |
-
|
305 |
-
self.model = SentenceTransformer(self.base_model_id)
|
306 |
-
return
|
307 |
-
|
308 |
-
def prepare_data_for_finetuning(self, data):
|
309 |
-
corpus = data['corpus']
|
310 |
-
queries = data['questions']
|
311 |
-
relevant_docs = data['relevant_contexts']
|
312 |
-
return corpus, queries, relevant_docs
|
313 |
-
|
314 |
-
def get_data_loader(self):
|
315 |
-
corpus, queries, relevant_docs = self.prepare_data_for_finetuning(self.train_data)
|
316 |
-
|
317 |
-
examples = []
|
318 |
-
for query_id, query in queries.items():
|
319 |
-
doc_id = relevant_docs[query_id][0]
|
320 |
-
text = corpus[doc_id]
|
321 |
-
example = InputExample(texts=[query, text])
|
322 |
-
examples.append(example)
|
323 |
-
self.loader = DataLoader(examples, batch_size=self.batch_size)
|
324 |
-
return self
|
325 |
-
|
326 |
-
def loss_function(self):
|
327 |
-
inner_training_loss = MultipleNegativesRankingLoss(self.model)
|
328 |
-
self.train_loss = MatryoshkaLoss(
|
329 |
-
self.model,
|
330 |
-
inner_training_loss,
|
331 |
-
matryoshka_dims=self.matryoshka_dimensions
|
332 |
-
)
|
333 |
-
return self
|
334 |
-
|
335 |
-
def get_evaluator_for_val(self):
|
336 |
-
corpus, queries, relevant_docs = self.prepare_data_for_finetuning(self.val_data)
|
337 |
-
self.evaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs)
|
338 |
-
return self
|
339 |
-
|
340 |
-
def fit_model(self):
|
341 |
-
warmup_steps = int(len(self.loader) * self.number_of_training_epochs * 0.1)
|
342 |
-
self.model.fit(
|
343 |
-
train_objectives=[(self.loader, self.train_loss)],
|
344 |
-
epochs=self.number_of_training_epochs,
|
345 |
-
warmup_steps=warmup_steps,
|
346 |
-
output_path=self.finetuned_model_output_path,
|
347 |
-
show_progress_bar=True,
|
348 |
-
evaluator=self.evaluator,
|
349 |
-
evaluation_steps=self.evaluation_steps,
|
350 |
-
)
|
351 |
-
|
352 |
-
def run_steps_to_finetune_model(self):
|
353 |
-
# load train data into Loader
|
354 |
-
self.get_data_loader()
|
355 |
-
|
356 |
-
# set up loss function
|
357 |
-
self.loss_function()
|
358 |
-
|
359 |
-
# set up evaluator with val data
|
360 |
-
self.get_evaluator_for_val()
|
361 |
-
|
362 |
-
# finetune the model
|
363 |
-
self.fit_model()
|
364 |
-
return self
|
365 |
-
|
366 |
-
|
367 |
-
class FineTuneModelAndEvaluateRetriever(FineTuneModel):
|
368 |
-
def __init__(self,
|
369 |
-
train_data,
|
370 |
-
val_data,
|
371 |
-
test_data,
|
372 |
-
batch_size,
|
373 |
-
base_model_id='Snowflake/snowflake-arctic-embed-m',
|
374 |
-
matryoshka_dimensions=[768, 512, 256, 128, 64],
|
375 |
-
number_of_training_epochs=5,
|
376 |
-
finetuned_model_output_path='finetuned_arctic',
|
377 |
-
evaluation_steps = 50,
|
378 |
-
):
|
379 |
-
super().__init__(train_data=train_data,
|
380 |
-
val_data=val_data,
|
381 |
-
batch_size=batch_size,
|
382 |
-
base_model_id=base_model_id,
|
383 |
-
matryoshka_dimensions=matryoshka_dimensions,
|
384 |
-
number_of_training_epochs=number_of_training_epochs,
|
385 |
-
finetuned_model_output_path=finetuned_model_output_path,
|
386 |
-
evaluation_steps = evaluation_steps)
|
387 |
-
self.test_data = test_data
|
388 |
-
return
|
389 |
-
|
390 |
-
def set_up_test_data_for_retrieval(self, embedding_model_for_retrieval, top_k_for_retrieval):
|
391 |
-
corpus, questions, relevant_docs = self.prepare_data_for_finetuning(self.test_data)
|
392 |
-
|
393 |
-
documents = [Document(page_content=content, metadata={"id": doc_id})
|
394 |
-
for doc_id, content in corpus.items()]
|
395 |
-
|
396 |
-
vectorstore = FAISS.from_documents(documents, embedding_model_for_retrieval)
|
397 |
-
retriever = vectorstore.as_retriever(search_kwargs={"k": top_k_for_retrieval})
|
398 |
-
return corpus, questions, relevant_docs, retriever
|
399 |
-
|
400 |
-
def evaluate_embeddings_model(self, embedding_model_for_retrieval, top_k_for_retrieval, verbose=False):
|
401 |
-
corpus, questions, relevant_docs, retriever = \
|
402 |
-
self.set_up_test_data_for_retrieval(embedding_model_for_retrieval, top_k_for_retrieval)
|
403 |
-
eval_results = []
|
404 |
-
for id, question in tqdm.tqdm(questions.items()):
|
405 |
-
retrieved_nodes = retriever.invoke(question)
|
406 |
-
retrieved_ids = [node.metadata["id"] for node in retrieved_nodes]
|
407 |
-
expected_id = relevant_docs[id][0]
|
408 |
-
is_hit = expected_id in retrieved_ids
|
409 |
-
eval_results.append({"id": id, "question": question, "expected_id": expected_id, "is_hit": is_hit})
|
410 |
-
return eval_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|