File size: 6,015 Bytes
9e6917b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import json
import requests
from bs4 import BeautifulSoup
import pandas as pd
from io import BytesIO
def Excel_final(url):
        def fetch_restaurant_data(url):
            headers = {
                'Cookie': '__cf_bm=_AOZtAiObnqBHPy4zhGRgBLW9xg9WiaDCRzg5E0sbMk-1715757967-1.0.1.1-xZNMBsnAqy_tfjUveujgfzT4Usw5ur4u7L0JlCcNXAQIC6Cq6wj46vPH7RLTh0Gq90JENxl7kbzjyOUFaBr8yCkmRGmt7APITEk0kkXzLTs; roo_guid=c40617a7-76f7-432c-b780-f2653cd2edfe; roo_session_guid=5846d6f0-5b7f-4598-8c6d-82b8023fd4fc'
            }
            response = requests.get(url, headers=headers)
            if response.status_code != 200:
                print(f"Failed to fetch the URL: {url}")
                return None
            soup = BeautifulSoup(response.content, 'html.parser')
            script_tag = soup.find('script', id='__NEXT_DATA__')
            if not script_tag:
                print("Script tag not found")
                return None
            json_data = json.loads(script_tag.string)
            json_data = json_data['props']['initialState']['menuPage']['menu']['meta']
            items = json_data['items']
            categories = json_data['categories']
            category_map = {category['id']: category['name'] for category in categories}
            modifier_groups = json_data['modifierGroups']
            modifier_groups_dict = {modifier_group['id']: modifier_group for modifier_group in modifier_groups}
            items_with_modifiers = []
            current_category = None
            current_category_position = 0
            for item in items:
                category_id = item['categoryId']
                category_name = category_map.get(category_id, 'Unknown')
                if category_name == "Unknown":
                    continue
                if category_name != current_category:
                    current_category = category_name
                    current_category_position += 1
                    item_position = 1
                else:
                    item_position += 1
                item_with_modifiers = {
                    "id": item['id'],
                    "category_id": category_id,
                    "category_name": category_name,
                    "category_position": current_category_position,
                    "item_position": item_position,
                    "name": item['name'],
                    "description": item.get('description', ''),
                    "price": item['price']['formatted'],
                    "img_url": item.get('image').get('url', '') if item.get('image') else '',
                    "modifier_groups": [modifier_groups_dict.get(modifier_group_id, {}) for modifier_group_id in item.get('modifierGroupIds', [])],
                }
                items_with_modifiers.append(item_with_modifiers)
            return items_with_modifiers

        def save_data_to_excel(data):
            rows = []
            max_options = 0
            # Find the maximum number of options for any modifier group
            for item in data:
                for modifier_group in item['modifier_groups']:
                    num_options = len(modifier_group.get('modifierOptions', []))
                    if num_options > max_options:
                        max_options = num_options
            for item in data:
                base_row = [
                    item['category_name'],
                    item['category_position'],
                    item['item_position'],
                    item['name'],
                    item['description'],
                    item['price'],
                    item['img_url'],
                ]
                first_modifier_group = True
                for modifier_group in item['modifier_groups']:
                    modifier_group_row = base_row + [
                        modifier_group.get('name', ''),
                        modifier_group.get('minSelection', ''),
                        modifier_group.get('maxSelection', '')
                    ]
                    options = modifier_group.get('modifierOptions', [])
                    for option in options:
                        modifier_group_row += [
                            option.get('name', ''),
                            option['price']['formatted'] if option.get('price') else ''
                        ]
                    # Fill in the remaining columns with empty strings if there are fewer options than max_options
                    modifier_group_row += [''] * (max_options * 2 - len(options) * 2)
                    if first_modifier_group:
                        rows.append(modifier_group_row)
                        first_modifier_group = False
                    else:
                        rows.append([''] * len(base_row) + modifier_group_row[len(base_row):])
                if not item['modifier_groups']:
                    rows.append(base_row + [''] * (max_options * 2 + 3))
            # Create column headers
            columns = [
                'Category Name', 'Category Position', 'Item Position', 'Item Name', 'Description', 'Item Price', 'Image URL', 'Modifier Group Name', 'Min Selection', 'Max Selection'
            ]
            for i in range(1, max_options + 1):
                columns += [f'Option {i} Name', f'Option {i} Price']
            df = pd.DataFrame(rows, columns=columns)
            if 'Max Selection' in df.columns:
                max_column_index = df.columns.get_loc('Max Selection')
                for i in range(max_column_index + 1, len(df.columns)):
                    df.rename(columns={df.columns[i]: ''}, inplace=True)
            return df
        outlet_code = "Deliveroo_restro"
        data = fetch_restaurant_data(url)
        df = save_data_to_excel(data)
        
        output = BytesIO()
        with pd.ExcelWriter(output, engine='openpyxl') as writer:
                df.to_excel(writer, index=False, sheet_name='Menu')
        output.seek(0)
        
        return output,f"{outlet_code}_menu.xlsx"