Spaces:
Sleeping
Sleeping
File size: 12,570 Bytes
9e6917b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import pandas as pd
import requests
import json
from bs4 import BeautifulSoup
import streamlit as st
import mongoengine as me
import certifi
# Streamlit app setup
st.title("Restaurant Menu Data Extraction")
url1 = st.text_input("Please enter the restaurant URL:")
if url1:
# Extract outlet code from URL
outlet_code = url1.split('/')[-2]
st.write(f"Extracted outlet code: {outlet_code}")
# API request setup
url = "https://food.noon.com/_svc/mp-food-api-mpnoon/consumer/restaurant/outlet/details/guest"
payload = {
"addressLat": 244538840,
"addressLng": 543773438,
"deliveryType": "default",
"outletCode": outlet_code
}
headers = {
'Connection': 'keep-alive',
"Accept": "application/json, text/plain, */*",
"Accept-Encoding": "gzip, deflate, br, zstd",
"Accept-Language": "en-GB,en-US;q=0.9,en;q=0.8,gu;q=0.7",
"Cache-Control": "no-cache, max-age=0, must-revalidate, no-store",
"Content-Type": "application/json",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36",
"Cookie":"bm_mi=791533C8E67CE8E7DA98E80ADED70F69~YAAQRK0cuOep9tGPAQAAUYKw3RcGDAVhD+mtWU8IH76wZL29zl4qqCjMwGv8sKtYlQWZNaFftSOvHFOvQU4+3CY2uHZyjjK6I3GeNdKEn+XHupISeNc0K16GOXLqcPOwu4sADTmxE7PYQvSQE7eimhqsBiJVRd96R8W0D2hl31FlY/4rl+NPZvM3iXjrn2GO50VMv+HhGfCnDMBwApBxgpMWFLfs0u6EYy44mg/FXbom5s5pa3cro8AS35nYHbdUbi61K9fnWRVaF8L/4z0xh7V1AEQETevb5fdGF8aB9m2UG29p2W6KSMb8DyFZLpG3vl5+IRECqZdFxaUMnykO8G/ynRHG~1; Domain=.noon.com; Path=/; Expires=Mon, 03 Jun 2024 12:41:22 GMT; Max-Age=7199; Secure"
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
json_data = response.json()
with open(f'{outlet_code}.json', 'w') as json_file:
json.dump(json_data, json_file, indent=4)
st.success("JSON data has been written to json file.")
else:
st.error(f"Failed to retrieve content from the URL: {response.status_code}")
# Extract items and options
def extract_items_with_categories(menu):
items_list = []
for category in menu['categories']:
category_name = category['name']
category_position = category['position']
for item_code in category['items']:
item = next((item for item in menu['items'] if item['itemCode'] == item_code), None)
if item:
items_list.append({
'category': category_name,
'item': item['name'],
'itemCode': item['itemCode'],
'item-position': item['position'],
'img-url': item['image'],
'price': item['price'],
'Description': item['itemDesc'],
'position': category_position,
})
return items_list
def extract_options(menu):
options_list = []
for item in menu['items']:
if 'modifiers' in item:
for modifier_code in item['modifiers']:
modifier = next((modifier for modifier in menu['modifiers'] if modifier['modifierCode'] == modifier_code), None)
if modifier:
for option in modifier['options']:
option_item = next((item for item in menu['items'] if item['itemCode'] == option['itemCode']), None)
if option_item:
options_list.append({
'itemCode': item['itemCode'],
'itemName': item['name'],
'Option Group Name': modifier['name'],
'Min': modifier.get('minTotalOptions'),
'Max': modifier.get('maxTotalOptions'),
'Option name': option_item['name'],
'Option price': option['price']
})
return options_list
items_list = extract_items_with_categories(json_data['data']['menu'])
options_list = extract_options(json_data['data']['menu'])
def join_with_newline(x):
return '\n'.join(str(value) for value in x)
# Creating DataFrames with 'itemCode' column
df_items = pd.DataFrame(items_list)
df_options = pd.DataFrame(options_list)
# Merge the DataFrames based on 'itemCode'
final_df = pd.merge(df_items, df_options, on='itemCode', how='left')
final_df = final_df.groupby(['item', 'category'], as_index=False).agg({
'Option Group Name': join_with_newline,
'Option name': join_with_newline,
'Option price': join_with_newline,
'Min': join_with_newline,
'Max': join_with_newline,
'item-position': 'first',
'img-url': 'first',
'price': 'first',
'Description': 'first',
'item-position': 'first',
'position': 'first'
})
final_df = final_df.drop_duplicates().reset_index(drop=True)
def split_rows(df):
rows = []
for idx, row in df.iterrows():
min_values = row['Min'].split('\n')
max_values = row['Max'].split('\n')
option_groups = row['Option Group Name'].split('\n')
option_names = row['Option name'].split('\n')
option_prices = row['Option price'].split('\n')
for i in range(len(option_groups)):
current_row = {
'category': row['category'],
'item': row['item'],
'item-position': row['item-position'],
'img-url': row['img-url'],
'price': row['price'],
'Description': row['Description'],
'position': row['position'],
'Min': min_values[i] if i < len(min_values) else '',
'Max': max_values[i] if i < len(max_values) else '',
'Option Group Name': option_groups[i] if i < len(option_groups) else '',
'Option name': option_names[i] if i < len(option_names) else '',
'Option price': option_prices[i] if i < len(option_prices) else ''
}
rows.append(current_row)
return pd.DataFrame(rows)
split_df = split_rows(final_df)
split_df.fillna('', inplace=True)
split_df = split_df.replace('nan', '')
split_df.to_excel(f'{outlet_code}_1.xlsx', index=False)
# Final processing to JSON
df = pd.read_excel(f'{outlet_code}_1.xlsx')
json_data = df.to_json(orient='records')
with open(f'{outlet_code}_1.json', 'w') as f:
f.write(json_data)
# Process JSON data for final output
with open(f'{outlet_code}_1.json', 'r') as file:
data = json.load(file)
def process_item(item):
common_fields = {
'category': item['category'],
'category-position': item['position'],
'item': item['item'],
'item-position': item['item-position'],
'Description': item['Description'],
'img-url': item['img-url'],
'price': item['price']
}
options = []
for i in range(1, 38):
option_group_name = f"Option Group {i} Name"
option_name_key = f"Option {i} Name"
option_price_key = f"Option {i} Price"
min_values_key = f"Min{i}"
max_values_key = f"Max{i}"
if option_group_name in item and item[option_group_name]:
options.append({
'Option Group Name': item[option_group_name],
'Option Name': item[option_name_key],
'Option Price': item[option_price_key],
'Min': item[min_values_key],
'Max': item[max_values_key]
})
return {**common_fields, 'Options': options}
processed_items = [process_item(item) for item in data]
with open(f'processed_items_{outlet_code}.json', 'w') as outfile:
json.dump(processed_items, outfile, indent=4)
# Extract options
def extract_options(item):
option_data = {}
for option in item["Options"]:
option_group_name = option["Option Group Name"]
if option_group_name not in option_data:
option_data[option_group_name] = {
"Names": [],
"Prices": [],
"Mins": [],
"Maxs": [],
"GroupMin": option["Min"],
"GroupMax": option["Max"]
}
option_data[option_group_name]["Names"].append(option["Option Name"])
option_data[option_group_name]["Prices"].append(option["Option Price"])
option_data[option_group_name]["Mins"].append(option["Min"])
option_data[option_group_name]["Maxs"].append(option["Max"])
return option_data
with open(f'processed_items_{outlet_code}.json', 'r') as file:
data = json.load(file)
all_rows_data = []
for item in data:
item_info = {
'category': item['category'],
'category-position': item['category-position'],
'item': item['item'],
'item-position': item['item-position'],
'Description': item['Description'],
'img-url': item['img-url'],
'price': item['price']
}
options = extract_options(item)
max_options = 0
for group in options.values():
max_options = max(max_options, len(group["Names"]))
for i in range(max_options):
row = item_info.copy()
for group_name, group_data in options.items():
row[f"Option Group {group_name}"] = group_name
row[f"Option {group_name} Name"] = group_data["Names"][i] if i < len(group_data["Names"]) else ""
row[f"Option {group_name} Price"] = group_data["Prices"][i] if i < len(group_data["Prices"]) else ""
row[f"Min {group_name}"] = group_data["Mins"][i] if i < len(group_data["Mins"]) else ""
row[f"Max {group_name}"] = group_data["Maxs"][i] if i < len(group_data["Maxs"]) else ""
all_rows_data.append(row)
final_df = pd.DataFrame(all_rows_data)
final_df.to_excel(f'{outlet_code}_final_output.xlsx', index=False)
# MongoDB setup
mongo_host = st.secrets["mongo"]["host"]
mongo_username = st.secrets["mongo"]["username"]
mongo_password = st.secrets["mongo"]["password"]
# Connect to MongoDB
connection_str = f"mongodb+srv://{mongo_username}:{mongo_password}@{mongo_host}/test?retryWrites=true&w=majority"
me.connect(host=connection_str, tlsCAFile=certifi.where())
class Item(me.Document):
category = me.StringField()
category_position = me.IntField()
item = me.StringField()
item_position = me.IntField()
description = me.StringField()
img_url = me.StringField()
price = me.FloatField()
options = me.ListField()
items_collection = []
for index, row in final_df.iterrows():
options = []
for i in range(1, 38):
option_group = f"Option Group {i}"
option_name_key = f"Option {i} Name"
option_price_key = f"Option {i} Price"
min_key = f"Min {i}"
max_key = f"Max {i}"
if pd.notna(row[option_group]) and row[option_group]:
options.append({
"group_name": row[option_group],
"name": row[option_name_key],
"price": row[option_price_key],
"min": row[min_key],
"max": row[max_key]
})
item_doc = Item(
category=row['category'],
category_position=row['category-position'],
item=row['item'],
item_position=row['item-position'],
description=row['Description'],
img_url=row['img-url'],
price=row['price'],
options=options
)
items_collection.append(item_doc)
if items_collection:
Item.objects.insert(items_collection)
st.success("Data has been saved to MongoDB.")
else:
st.warning("No data to save to MongoDB.")
|