File size: 12,570 Bytes
9e6917b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import pandas as pd
import requests
import json
from bs4 import BeautifulSoup
import streamlit as st
import mongoengine as me
import certifi

# Streamlit app setup
st.title("Restaurant Menu Data Extraction")
url1 = st.text_input("Please enter the restaurant URL:")

if url1:
    # Extract outlet code from URL
    outlet_code = url1.split('/')[-2]
    st.write(f"Extracted outlet code: {outlet_code}")

    # API request setup
    url = "https://food.noon.com/_svc/mp-food-api-mpnoon/consumer/restaurant/outlet/details/guest"
    payload = {
        "addressLat": 244538840,
        "addressLng": 543773438,
        "deliveryType": "default",
        "outletCode": outlet_code
    }
    headers = {
        'Connection': 'keep-alive',
        "Accept": "application/json, text/plain, */*",
        "Accept-Encoding": "gzip, deflate, br, zstd",
        "Accept-Language": "en-GB,en-US;q=0.9,en;q=0.8,gu;q=0.7",
        "Cache-Control": "no-cache, max-age=0, must-revalidate, no-store",
        "Content-Type": "application/json",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36",
        "Cookie":"bm_mi=791533C8E67CE8E7DA98E80ADED70F69~YAAQRK0cuOep9tGPAQAAUYKw3RcGDAVhD+mtWU8IH76wZL29zl4qqCjMwGv8sKtYlQWZNaFftSOvHFOvQU4+3CY2uHZyjjK6I3GeNdKEn+XHupISeNc0K16GOXLqcPOwu4sADTmxE7PYQvSQE7eimhqsBiJVRd96R8W0D2hl31FlY/4rl+NPZvM3iXjrn2GO50VMv+HhGfCnDMBwApBxgpMWFLfs0u6EYy44mg/FXbom5s5pa3cro8AS35nYHbdUbi61K9fnWRVaF8L/4z0xh7V1AEQETevb5fdGF8aB9m2UG29p2W6KSMb8DyFZLpG3vl5+IRECqZdFxaUMnykO8G/ynRHG~1; Domain=.noon.com; Path=/; Expires=Mon, 03 Jun 2024 12:41:22 GMT; Max-Age=7199; Secure"
    }

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        json_data = response.json()
        with open(f'{outlet_code}.json', 'w') as json_file:
            json.dump(json_data, json_file, indent=4)
        st.success("JSON data has been written to json file.")
    else:
        st.error(f"Failed to retrieve content from the URL: {response.status_code}")

    # Extract items and options
    def extract_items_with_categories(menu):
        items_list = []
        for category in menu['categories']:
            category_name = category['name']
            category_position = category['position']
            for item_code in category['items']:
                item = next((item for item in menu['items'] if item['itemCode'] == item_code), None)
                if item:
                    items_list.append({
                        'category': category_name,
                        'item': item['name'],
                        'itemCode': item['itemCode'],
                        'item-position': item['position'],
                        'img-url': item['image'],
                        'price': item['price'],
                        'Description': item['itemDesc'],
                        'position': category_position,
                    })
        return items_list

    def extract_options(menu):
        options_list = []
        for item in menu['items']:
            if 'modifiers' in item:
                for modifier_code in item['modifiers']:
                    modifier = next((modifier for modifier in menu['modifiers'] if modifier['modifierCode'] == modifier_code), None)
                    if modifier:
                        for option in modifier['options']:
                            option_item = next((item for item in menu['items'] if item['itemCode'] == option['itemCode']), None)
                            if option_item:
                                options_list.append({
                                    'itemCode': item['itemCode'],
                                    'itemName': item['name'],
                                    'Option Group Name': modifier['name'],
                                    'Min': modifier.get('minTotalOptions'),
                                    'Max': modifier.get('maxTotalOptions'),
                                    'Option name': option_item['name'],
                                    'Option price': option['price']
                                })
        return options_list

    items_list = extract_items_with_categories(json_data['data']['menu'])
    options_list = extract_options(json_data['data']['menu'])

    def join_with_newline(x):
        return '\n'.join(str(value) for value in x)

    # Creating DataFrames with 'itemCode' column
    df_items = pd.DataFrame(items_list)
    df_options = pd.DataFrame(options_list)

    # Merge the DataFrames based on 'itemCode'
    final_df = pd.merge(df_items, df_options, on='itemCode', how='left')

    final_df = final_df.groupby(['item', 'category'], as_index=False).agg({
        'Option Group Name': join_with_newline,
        'Option name': join_with_newline,
        'Option price': join_with_newline,
        'Min': join_with_newline,
        'Max': join_with_newline,
        'item-position': 'first',
        'img-url': 'first',
        'price': 'first',
        'Description': 'first',
        'item-position': 'first',
        'position': 'first'
    })

    final_df = final_df.drop_duplicates().reset_index(drop=True)

    def split_rows(df):
        rows = []
        for idx, row in df.iterrows():
            min_values = row['Min'].split('\n')
            max_values = row['Max'].split('\n')
            option_groups = row['Option Group Name'].split('\n')
            option_names = row['Option name'].split('\n')
            option_prices = row['Option price'].split('\n')

            for i in range(len(option_groups)):
                current_row = {
                    'category': row['category'],
                    'item': row['item'],
                    'item-position': row['item-position'],
                    'img-url': row['img-url'],
                    'price': row['price'],
                    'Description': row['Description'],
                    'position': row['position'],
                    'Min': min_values[i] if i < len(min_values) else '',
                    'Max': max_values[i] if i < len(max_values) else '',
                    'Option Group Name': option_groups[i] if i < len(option_groups) else '',
                    'Option name': option_names[i] if i < len(option_names) else '',
                    'Option price': option_prices[i] if i < len(option_prices) else ''
                }
                rows.append(current_row)
        return pd.DataFrame(rows)

    split_df = split_rows(final_df)
    split_df.fillna('', inplace=True)
    split_df = split_df.replace('nan', '')
    split_df.to_excel(f'{outlet_code}_1.xlsx', index=False)

    # Final processing to JSON
    df = pd.read_excel(f'{outlet_code}_1.xlsx')
    json_data = df.to_json(orient='records')
    with open(f'{outlet_code}_1.json', 'w') as f:
        f.write(json_data)

    # Process JSON data for final output
    with open(f'{outlet_code}_1.json', 'r') as file:
        data = json.load(file)

    def process_item(item):
        common_fields = {
            'category': item['category'],
            'category-position': item['position'],
            'item': item['item'],
            'item-position': item['item-position'],
            'Description': item['Description'],
            'img-url': item['img-url'],
            'price': item['price']
        }

        options = []
        for i in range(1, 38):
            option_group_name = f"Option Group {i} Name"
            option_name_key = f"Option {i} Name"
            option_price_key = f"Option {i} Price"
            min_values_key = f"Min{i}"
            max_values_key = f"Max{i}"

            if option_group_name in item and item[option_group_name]:
                options.append({
                    'Option Group Name': item[option_group_name],
                    'Option Name': item[option_name_key],
                    'Option Price': item[option_price_key],
                    'Min': item[min_values_key],
                    'Max': item[max_values_key]
                })

        return {**common_fields, 'Options': options}

    processed_items = [process_item(item) for item in data]
    with open(f'processed_items_{outlet_code}.json', 'w') as outfile:
        json.dump(processed_items, outfile, indent=4)

    # Extract options
    def extract_options(item):
        option_data = {}
        for option in item["Options"]:
            option_group_name = option["Option Group Name"]
            if option_group_name not in option_data:
                option_data[option_group_name] = {
                    "Names": [],
                    "Prices": [],
                    "Mins": [],
                    "Maxs": [],
                    "GroupMin": option["Min"],
                    "GroupMax": option["Max"]
                }
            option_data[option_group_name]["Names"].append(option["Option Name"])
            option_data[option_group_name]["Prices"].append(option["Option Price"])
            option_data[option_group_name]["Mins"].append(option["Min"])
            option_data[option_group_name]["Maxs"].append(option["Max"])
        return option_data

    with open(f'processed_items_{outlet_code}.json', 'r') as file:
        data = json.load(file)

    all_rows_data = []
    for item in data:
        item_info = {
            'category': item['category'],
            'category-position': item['category-position'],
            'item': item['item'],
            'item-position': item['item-position'],
            'Description': item['Description'],
            'img-url': item['img-url'],
            'price': item['price']
        }
        options = extract_options(item)
        max_options = 0
        for group in options.values():
            max_options = max(max_options, len(group["Names"]))

        for i in range(max_options):
            row = item_info.copy()
            for group_name, group_data in options.items():
                row[f"Option Group {group_name}"] = group_name
                row[f"Option {group_name} Name"] = group_data["Names"][i] if i < len(group_data["Names"]) else ""
                row[f"Option {group_name} Price"] = group_data["Prices"][i] if i < len(group_data["Prices"]) else ""
                row[f"Min {group_name}"] = group_data["Mins"][i] if i < len(group_data["Mins"]) else ""
                row[f"Max {group_name}"] = group_data["Maxs"][i] if i < len(group_data["Maxs"]) else ""
            all_rows_data.append(row)

    final_df = pd.DataFrame(all_rows_data)
    final_df.to_excel(f'{outlet_code}_final_output.xlsx', index=False)

    # MongoDB setup
    mongo_host = st.secrets["mongo"]["host"]
    mongo_username = st.secrets["mongo"]["username"]
    mongo_password = st.secrets["mongo"]["password"]

    # Connect to MongoDB
    connection_str = f"mongodb+srv://{mongo_username}:{mongo_password}@{mongo_host}/test?retryWrites=true&w=majority"
    me.connect(host=connection_str, tlsCAFile=certifi.where())

    class Item(me.Document):
        category = me.StringField()
        category_position = me.IntField()
        item = me.StringField()
        item_position = me.IntField()
        description = me.StringField()
        img_url = me.StringField()
        price = me.FloatField()
        options = me.ListField()

    items_collection = []

    for index, row in final_df.iterrows():
        options = []
        for i in range(1, 38):
            option_group = f"Option Group {i}"
            option_name_key = f"Option {i} Name"
            option_price_key = f"Option {i} Price"
            min_key = f"Min {i}"
            max_key = f"Max {i}"

            if pd.notna(row[option_group]) and row[option_group]:
                options.append({
                    "group_name": row[option_group],
                    "name": row[option_name_key],
                    "price": row[option_price_key],
                    "min": row[min_key],
                    "max": row[max_key]
                })

        item_doc = Item(
            category=row['category'],
            category_position=row['category-position'],
            item=row['item'],
            item_position=row['item-position'],
            description=row['Description'],
            img_url=row['img-url'],
            price=row['price'],
            options=options
        )
        items_collection.append(item_doc)

    if items_collection:
        Item.objects.insert(items_collection)
        st.success("Data has been saved to MongoDB.")
    else:
        st.warning("No data to save to MongoDB.")