File size: 6,873 Bytes
3618a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import streamlit as st
from chat import ChatSession, ChatSessionSchema, Role
from app import react_agent
from mongoengine import connect
from config import settings
import requests
from tools.menu_tools_utils import get_data_store_id
import speech_recognition as sr
st.set_page_config(layout="wide")
connect(settings.DB_NAME, host=settings.DB_URI, alias="default")
print("Database connection established!!")
def speech_to_text():
r = sr.Recognizer()
with sr.Microphone() as mic:
st.write("Listening for your query...")
r.adjust_for_ambient_noise(mic, duration=1)
audio = r.listen(mic)
try:
text = r.recognize_google(audio)
st.success(f"Recognized: {text}")
return text
except sr.UnknownValueError:
st.error("Sorry, I could not understand the audio.")
return ""
except sr.RequestError as e:
st.error(
f"Could not request results from Google Speech Recognition service; {e}"
)
return ""
col1, col2 = st.columns([1, 3])
with col2:
st.title("Restaurant Order Bot")
if "session_id" not in st.session_state:
session = ChatSession()
session.save()
st.session_state["session_id"] = str(session.id)
if "conversation" not in st.session_state:
st.session_state["conversation"] = []
# Input: Either type in or use the speech-to-text button
user_query = st.text_input("Ask something:")
col3, col4, col5 = st.columns([3, 3, 3])
# New button for speech recognition
with col3:
if st.button("🎤 Speak your query"):
recognized_text = speech_to_text()
if recognized_text:
user_query = recognized_text # Set recognized text to the user input
st.session_state["conversation"].append(
{"role": "user", "text": user_query}
)
chat_schema = ChatSessionSchema(
session_id=st.session_state["session_id"], query=user_query
)
chat_session = ChatSession.objects(id=chat_schema.session_id).first()
chat_history = chat_session.get_last_messages()
response = react_agent.handle_query(
session_id=chat_schema.session_id,
query=chat_schema.query,
chat_history=chat_history,
)
chat_session.add_message_with_metadata(
role=Role.USER.value, content=chat_schema.query
)
chat_session.add_message_with_metadata(
role=Role.MODEL.value, content=response
)
if response:
st.session_state["conversation"].append(
{"role": "bot", "text": response}
)
else:
st.session_state["conversation"].append(
{
"role": "bot",
"text": "Error: Could not get a response from the server.",
}
)
# Submit button for text input
with col4:
if st.button("Submit"):
if user_query:
st.session_state["conversation"].append(
{"role": "user", "text": user_query}
)
chat_schema = ChatSessionSchema(
session_id=st.session_state["session_id"], query=user_query
)
chat_session = ChatSession.objects(id=chat_schema.session_id).first()
chat_history = chat_session.get_last_messages()
response = react_agent.handle_query(
session_id=chat_schema.session_id,
query=chat_schema.query,
chat_history=chat_history,
)
chat_session.add_message_with_metadata(
role=Role.USER.value, content=chat_schema.query
)
chat_session.add_message_with_metadata(
role=Role.MODEL.value, content=response
)
if response:
st.session_state["conversation"].append(
{"role": "bot", "text": response}
)
else:
st.session_state["conversation"].append(
{
"role": "bot",
"text": "Error: Could not get a response from the server.",
}
)
with col5:
if st.button("Clear Chat"):
st.session_state["conversation"] = []
# Display conversation
user_message_style = """
background-color: #d1e7dd;
padding: 10px;
border-radius: 10px;
margin-bottom: 10px;
color: #0f5132;
text-align: left;
"""
bot_message_style = """
background-color: #f8d7da;
padding: 10px;
border-radius: 10px;
margin-bottom: 10px;
color: #842029;
text-align: left;
"""
for message in st.session_state["conversation"]:
if message["role"] == "user":
st.markdown(
f"<div style='{user_message_style}'><strong>You:</strong> {message['text']}</div>",
unsafe_allow_html=True,
)
else:
st.markdown(
f"<div style='{bot_message_style}'><strong>Bot:</strong> {message['text']}</div>",
unsafe_allow_html=True,
)
with col1:
st.title("Menu")
# store_id = "66dff7a04b17303d454d4bbc"
# brand_id = "66cec85093c5b0896c9125c5"
response = get_data_store_id(settings.STORE_ID, settings.BRAND_ID)
menu_data = response
blank_image_url = "https://via.placeholder.com/1x1/FFFFFF/FFFFFF"
with st.container():
if menu_data.get("success"):
for category in menu_data["data"]:
with st.expander(category["name"], expanded=False):
for item in category.get("itemsData", []):
try:
img_url = item.get("img_url", None)
if img_url:
st.image(img_url, width=100)
else:
st.image(blank_image_url, width=100)
except Exception as e:
st.image(blank_image_url, width=100)
st.write(f"**{item['title']}**: {item['price']} Dirham AED")
st.write(item["description"])
st.write("---")
else:
st.write("Failed to load menu data.")
|