import gradio as gr import json from itertools import product import subprocess # assuming you need this for calling run_on_scc.sh # Helper function to run the analysis def run_analysis(datasets, machines): selected_datasets = datasets # it's already a list selected_machines = machines # it's already a list if not selected_datasets: return "Please select at least one dataset." if not selected_machines: return "Please select at least one machine." configurations = [] for dataset, machine in product(selected_datasets, selected_machines): config = { "Dataset": dataset, "Binary": "True", "Image": "False", "TM_use": False, "value": "None", "Interpolation_value": "None", "Noise": False, "noise_type": False, "augmentation": False, "shear_factor": "None", "shear_prop": 0, "crop_scale_factor": "None", "crop_scale_prop": 0, "flip_code": "None", "flip_prop": 0, "rotation_angle": "None", "rotate_prop": 0, "color_number": "None", "color_prop": 0, "blur_param": "None", "blur_prop": 0, "features": "False", "glcm_distance": "None", "glcm_angle": "None", "glcm_prop": 0, "lbp_radius": "None", "lbp_prop": 0, "haralick_prop": 0, "Machine": machine, "lr": "None", "epochs": "None" } configurations.append(config) filepath = "results/models-parameters_list.txt" output_filepath = "results/evaluation_scores.txt" with open(filepath, 'w') as f: for config in configurations: f.write(json.dumps(config)) f.write("\n\n") # Call the SCC script and return computing status result = subprocess.run(["ssh", "-i", "~/.ssh/gradio_key", "vjain25@scc1.bu.edu", "bash", "run_on_scc.sh"], capture_output=True, text=True) return "Computing..." # Function to update the summary textbox def update_summary(datasets, machines): # datasets and machines are lists, not dictionaries summary_text = f"Selected Datasets:\n{', '.join(datasets) if datasets else 'None'}\n\n" summary_text += f"Selected Machines:\n{', '.join(machines) if machines else 'None'}" return summary_text # Gradio components with gr.Blocks() as app: gr.Markdown("# Cancer Analysis Tool") # Tab 1: Dataset Selection with gr.Tab("Dataset"): datasets = gr.CheckboxGroup( ["Binary Colon", "Binary Lung", "Binary Prostate"], label="Select Datasets:" ) # Tab 2: Machine Selection with gr.Tab("Machines"): machines = gr.CheckboxGroup( ["Binary SVM", "Binary KNN", "Binary Deepnet"], label="Select Machines:" ) # Tab 3: Summary and Analysis with gr.Tab("Analysis"): summary = gr.Textbox(label="Summary of Selections", interactive=False, lines=5) run_button = gr.Button("Run Analysis") result = gr.Textbox(label="Result", interactive=False) # Trigger analysis run_button.click( run_analysis, inputs=[datasets, machines], outputs=result ) # Update summary when selections change datasets.change(update_summary, [datasets, machines], summary) machines.change(update_summary, [datasets, machines], summary) # Launch the Gradio interface app.launch(share=True)