Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
"""Vision Transformer (ViT) in PyTorch. | |
A PyTorch implement of Vision Transformers as described in: | |
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' | |
- https://arxiv.org/abs/2010.11929 | |
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers` | |
- https://arxiv.org/abs/2106.10270 | |
The official jax code is released and available at https://github.com/google-research/vision_transformer | |
DeiT model defs and weights from https://github.com/facebookresearch/deit, | |
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 | |
Acknowledgments: | |
* The paper authors for releasing code and weights, thanks! | |
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out | |
for some einops/einsum fun | |
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT | |
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
import logging | |
import math | |
from functools import partial | |
from itertools import repeat | |
from typing import Callable, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as cp | |
from mmcv.runner import BaseModule, load_checkpoint | |
from mmseg.ops import resize | |
from mmseg.utils import get_root_logger | |
from torch import Tensor | |
from .drop_path import DropPath | |
def to_2tuple(x): | |
return tuple(repeat(x, 2)) | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = nn.GELU, | |
drop: float = 0.0, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class SwiGLUFFN(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = None, | |
drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
swiglu_hidden_features = int(2 * hidden_features / 3) | |
align_as = 8 | |
swiglu_hidden_features = (swiglu_hidden_features + align_as - 1) // align_as * align_as | |
self.w1 = nn.Linear(in_features, swiglu_hidden_features) | |
self.w2 = nn.Linear(in_features, swiglu_hidden_features) | |
self.w3 = nn.Linear(swiglu_hidden_features, out_features) | |
def forward(self, x: Tensor) -> Tensor: | |
x1 = self.w1(x) | |
x2 = self.w2(x) | |
hidden = F.silu(x1) * x2 | |
return self.w3(hidden) | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding.""" | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, bias=True | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.flatten = flatten | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x): | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x, H, W | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MemEffAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x: Tensor, H, W) -> Tensor: | |
from xformers.ops import memory_efficient_attention, unbind | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
q, k, v = unbind(qkv, 2) | |
x = memory_efficient_attention(q, k, v) | |
x = x.reshape([B, N, C]) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowedAttention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, window_size=14, pad_mode="constant" | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.window_size = window_size | |
self.pad_mode = pad_mode | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
N_ = self.window_size * self.window_size | |
H_ = math.ceil(H / self.window_size) * self.window_size | |
W_ = math.ceil(W / self.window_size) * self.window_size | |
qkv = self.qkv(x) # [B, N, C] | |
qkv = qkv.transpose(1, 2).reshape(B, C * 3, H, W) # [B, C, H, W] | |
qkv = F.pad(qkv, [0, W_ - W, 0, H_ - H], mode=self.pad_mode) | |
qkv = F.unfold( | |
qkv, kernel_size=(self.window_size, self.window_size), stride=(self.window_size, self.window_size) | |
) | |
B, C_kw_kw, L = qkv.shape # L - the num of windows | |
qkv = qkv.reshape(B, C * 3, N_, L).permute(0, 3, 2, 1) # [B, L, N_, C] | |
qkv = qkv.reshape(B, L, N_, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
# q,k,v [B, L, num_head, N_, C/num_head] | |
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] | |
# if self.mask: | |
# attn = attn * mask | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] | |
# attn @ v = [B, L, num_head, N_, C/num_head] | |
x = (attn @ v).permute(0, 2, 4, 3, 1).reshape(B, C_kw_kw // 3, L) | |
x = F.fold( | |
x, | |
output_size=(H_, W_), | |
kernel_size=(self.window_size, self.window_size), | |
stride=(self.window_size, self.window_size), | |
) # [B, C, H_, W_] | |
x = x[:, :, :H, :W].reshape(B, C, N).transpose(-1, -2) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
# class WindowedAttention(nn.Module): | |
# def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., window_size=14, pad_mode="constant"): | |
# super().__init__() | |
# self.num_heads = num_heads | |
# head_dim = dim // num_heads | |
# self.scale = head_dim ** -0.5 | |
# | |
# self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
# self.attn_drop = nn.Dropout(attn_drop) | |
# self.proj = nn.Linear(dim, dim) | |
# self.proj_drop = nn.Dropout(proj_drop) | |
# self.window_size = window_size | |
# self.pad_mode = pad_mode | |
# | |
# def forward(self, x, H, W): | |
# B, N, C = x.shape | |
# | |
# N_ = self.window_size * self.window_size | |
# H_ = math.ceil(H / self.window_size) * self.window_size | |
# W_ = math.ceil(W / self.window_size) * self.window_size | |
# x = x.view(B, H, W, C) | |
# x = F.pad(x, [0, 0, 0, W_ - W, 0, H_- H], mode=self.pad_mode) | |
# | |
# x = window_partition(x, window_size=self.window_size)# nW*B, window_size, window_size, C | |
# x = x.view(-1, N_, C) | |
# | |
# qkv = self.qkv(x).view(-1, N_, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
# q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
# attn = (q @ k.transpose(-2, -1)) * self.scale # [B, L, num_head, N_, N_] | |
# attn = attn.softmax(dim=-1) | |
# attn = self.attn_drop(attn) # [B, L, num_head, N_, N_] | |
# x = (attn @ v).transpose(1, 2).reshape(-1, self.window_size, self.window_size, C) | |
# | |
# x = window_reverse(x, self.window_size, H_, W_) | |
# x = x[:, :H, :W, :].reshape(B, N, C).contiguous() | |
# x = self.proj(x) | |
# x = self.proj_drop(x) | |
# return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
windowed=False, | |
window_size=14, | |
pad_mode="constant", | |
layer_scale=False, | |
with_cp=False, | |
ffn_layer=Mlp, | |
memeff=False, | |
): | |
super().__init__() | |
self.with_cp = with_cp | |
self.norm1 = norm_layer(dim) | |
if windowed: | |
self.attn = WindowedAttention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
window_size=window_size, | |
pad_mode=pad_mode, | |
) | |
elif memeff: | |
self.attn = MemEffAttention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop | |
) | |
else: | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ffn_layer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.layer_scale = layer_scale | |
if layer_scale: | |
self.gamma1 = nn.Parameter(torch.ones((dim)), requires_grad=True) | |
self.gamma2 = nn.Parameter(torch.ones((dim)), requires_grad=True) | |
def forward(self, x, H, W): | |
def _inner_forward(x): | |
if self.layer_scale: | |
x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
if self.with_cp and x.requires_grad: | |
x = cp.checkpoint(_inner_forward, x) | |
else: | |
x = _inner_forward(x) | |
return x | |
class TIMMVisionTransformer(BaseModule): | |
"""Vision Transformer. | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` | |
- https://arxiv.org/abs/2012.12877 | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
layer_scale=True, | |
embed_layer=PatchEmbed, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
act_layer=nn.GELU, | |
window_attn=False, | |
window_size=14, | |
pretrained=None, | |
with_cp=False, | |
pre_norm=False, | |
ffn_type="mlp", | |
memeff=False, | |
): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
pretrained: (str): pretrained path | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 1 | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.norm_layer = norm_layer | |
self.act_layer = act_layer | |
self.pretrain_size = img_size | |
self.drop_path_rate = drop_path_rate | |
self.drop_rate = drop_rate | |
self.patch_size = patch_size | |
window_attn = [window_attn] * depth if not isinstance(window_attn, list) else window_attn | |
window_size = [window_size] * depth if not isinstance(window_size, list) else window_size | |
logging.info("window attention:", window_attn) | |
logging.info("window size:", window_size) | |
logging.info("layer scale:", layer_scale) | |
self.patch_embed = embed_layer( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm | |
) | |
num_patches = self.patch_embed.num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
ffn_types = {"mlp": Mlp, "swiglu": SwiGLUFFN} | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential( | |
*[ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
windowed=window_attn[i], | |
window_size=window_size[i], | |
layer_scale=layer_scale, | |
with_cp=with_cp, | |
ffn_layer=ffn_types[ffn_type], | |
memeff=memeff, | |
) | |
for i in range(depth) | |
] | |
) | |
# self.norm = norm_layer(embed_dim) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# For CLIP | |
if pre_norm: | |
norm_pre = norm_layer(embed_dim) | |
self.norm_pre = norm_pre | |
else: | |
self.norm_pre = nn.Identity() | |
self.init_weights(pretrained) | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = get_root_logger() | |
load_checkpoint(self, pretrained, map_location="cpu", strict=False, logger=logger) | |
def forward_features(self, x): | |
x, H, W = self.patch_embed(x) | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_token, x), dim=1) | |
x = self.pos_drop(x + self.pos_embed) | |
# For CLIP | |
x = self.norm_pre(x) | |
for blk in self.blocks: | |
x = blk(x, H, W) | |
x = self.norm(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
return x | |
def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode): | |
"""Resize pos_embed weights. | |
Resize pos_embed using bicubic interpolate method. | |
Args: | |
pos_embed (torch.Tensor): Position embedding weights. | |
input_shpae (tuple): Tuple for (downsampled input image height, | |
downsampled input image width). | |
pos_shape (tuple): The resolution of downsampled origin training | |
image. | |
mode (str): Algorithm used for upsampling: | |
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | | |
``'trilinear'``. Default: ``'nearest'`` | |
Return: | |
torch.Tensor: The resized pos_embed of shape [B, L_new, C] | |
""" | |
assert pos_embed.ndim == 3, "shape of pos_embed must be [B, L, C]" | |
pos_h, pos_w = pos_shape | |
# keep dim for easy deployment | |
cls_token_weight = pos_embed[:, 0:1] | |
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w) :] | |
pos_embed_weight = pos_embed_weight.reshape(1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) | |
pos_embed_weight = resize(pos_embed_weight, size=input_shpae, align_corners=False, mode=mode) | |
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) | |
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) | |
return pos_embed | |