Vishaltiwari2019's picture
Update app.py
bbadfc1 verified
raw
history blame
791 Bytes
import gradio as gr
from transformers import pipeline
# Sentiment Analysis
sentiment = pipeline("sentiment-analysis")
def get_sentiment(input_text):
return sentiment(input_text)
iface_sentiment = gr.Interface(get_sentiment, inputs="text", outputs="text", title="Sentiment Analysis")
# Text to Speech Translation
tts_title = "Text to Speech Translation"
tts_examples = [
"I love learning machine learning",
"How do you do?",
]
tts_demo = gr.Interface.load(
"huggingface/facebook/fastspeech2-en-ljspeech",
title=tts_title,
examples=tts_examples,
description="Give me something to say!",
)
# Launching both interfaces
demo = gr.TabbedInterface([iface_sentiment, tts_demo], ["Sentiment Analysis", "Text to Speech"])
if __name__ == "__main__":
demo.launch()