Spaces:
Sleeping
Sleeping
Update tools.py
Browse files
tools.py
CHANGED
@@ -1,41 +1,41 @@
|
|
1 |
-
import os
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
from langchain.chat_models import ChatOpenAI
|
4 |
-
from langchain.document_loaders import PyPDFLoader
|
5 |
-
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
-
import serpapi
|
9 |
-
|
10 |
-
load_dotenv()
|
11 |
-
|
12 |
-
# LLM (Groq + LLaMA3)
|
13 |
-
llm = ChatOpenAI(
|
14 |
-
model="llama3-8b-8192",
|
15 |
-
openai_api_base="https://api.groq.com/openai/v1",
|
16 |
-
openai_api_key=os.environ["GROQ_API_KEY"]
|
17 |
-
)
|
18 |
-
|
19 |
-
# Embeddings (HuggingFace)
|
20 |
-
embeddings = HuggingFaceEmbeddings(model_name="
|
21 |
-
|
22 |
-
# Load PDFs and create FAISS vectorstore
|
23 |
-
def load_vectorstore(pdf_dir="pdfs/"):
|
24 |
-
docs = []
|
25 |
-
for file in os.listdir(pdf_dir):
|
26 |
-
if file.endswith(".pdf"):
|
27 |
-
loader = PyPDFLoader(os.path.join(pdf_dir, file))
|
28 |
-
docs.extend(loader.load())
|
29 |
-
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
30 |
-
chunks = splitter.split_documents(docs)
|
31 |
-
return FAISS.from_documents(chunks, embedding=embeddings)
|
32 |
-
|
33 |
-
# Custom Web Search tool using SerpAPI
|
34 |
-
def search_tool(query: str):
|
35 |
-
client = serpapi.Client(api_key=os.getenv("SERPAPI_API_KEY"))
|
36 |
-
search = client.search({
|
37 |
-
"engine": "google",
|
38 |
-
"q": query,
|
39 |
-
})
|
40 |
-
results = dict(search)
|
41 |
-
return results["organic_results"][0]["snippet"] # Return the snippet or any part of the result
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langchain.chat_models import ChatOpenAI
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
import serpapi
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# LLM (Groq + LLaMA3)
|
13 |
+
llm = ChatOpenAI(
|
14 |
+
model="llama3-8b-8192",
|
15 |
+
openai_api_base="https://api.groq.com/openai/v1",
|
16 |
+
openai_api_key=os.environ["GROQ_API_KEY"]
|
17 |
+
)
|
18 |
+
|
19 |
+
# Embeddings (HuggingFace)
|
20 |
+
embeddings = HuggingFaceEmbeddings(model_name="llama")
|
21 |
+
|
22 |
+
# Load PDFs and create FAISS vectorstore
|
23 |
+
def load_vectorstore(pdf_dir="pdfs/"):
|
24 |
+
docs = []
|
25 |
+
for file in os.listdir(pdf_dir):
|
26 |
+
if file.endswith(".pdf"):
|
27 |
+
loader = PyPDFLoader(os.path.join(pdf_dir, file))
|
28 |
+
docs.extend(loader.load())
|
29 |
+
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
30 |
+
chunks = splitter.split_documents(docs)
|
31 |
+
return FAISS.from_documents(chunks, embedding=embeddings)
|
32 |
+
|
33 |
+
# Custom Web Search tool using SerpAPI
|
34 |
+
def search_tool(query: str):
|
35 |
+
client = serpapi.Client(api_key=os.getenv("SERPAPI_API_KEY"))
|
36 |
+
search = client.search({
|
37 |
+
"engine": "google",
|
38 |
+
"q": query,
|
39 |
+
})
|
40 |
+
results = dict(search)
|
41 |
+
return results["organic_results"][0]["snippet"] # Return the snippet or any part of the result
|