Vishaltiwari2019 commited on
Commit
b2e0420
·
verified ·
1 Parent(s): 7416059

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -19
app.py CHANGED
@@ -1,22 +1,74 @@
1
- import gradio as gr
2
- from transformers import pipeline
 
 
3
 
4
- # Load the DETR object detection pipeline
5
- object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- # Function to perform object detection on an image
8
  def detect_objects(image):
9
- # Perform object detection
10
- results = object_detection_pipeline(image)
11
- # Extract bounding boxes and object labels
12
- bounding_boxes = [obj["bbox"] for obj in results]
13
- labels = [obj["label"] for obj in results]
14
- # Return bounding boxes and labels
15
- return bounding_boxes, labels
16
-
17
- # Define Gradio interface
18
- inputs = gr.inputs.Image()
19
- outputs = gr.outputs.ObjectDetection(labels=["person", "car", "truck", "bicycle", "motorcycle"]) # Customize labels as needed
20
-
21
- # Create Gradio interface
22
- gr.Interface(fn=detect_objects, inputs=inputs, outputs=outputs, title="Object Detection", description="Detect objects in images.").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Hugging Face's logo
2
+ Search models, datasets, users...
3
+
4
+ Spaces:
5
 
6
+ Epitech
7
+ /
8
+ Object-Detection
9
+
10
+ like
11
+ 1
12
+ App
13
+ Files
14
+ Community
15
+ Object-Detection
16
+ /
17
+ app.py
18
+ paulmondon
19
+ Add requirements.txt
20
+ a72c3ec
21
+ raw
22
+ history
23
+ blame
24
+ contribute
25
+ delete
26
+ 1.6 kB
27
+ from transformers import DetrImageProcessor, DetrForObjectDetection
28
+ import torch
29
+ from PIL import Image, ImageDraw
30
+ import gradio as gr
31
+ import requests
32
+ import random
33
 
 
34
  def detect_objects(image):
35
+ # Load the pre-trained DETR model
36
+ processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
37
+ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
38
+
39
+ inputs = processor(images=image, return_tensors="pt")
40
+ outputs = model(**inputs)
41
+
42
+ # convert outputs (bounding boxes and class logits) to COCO API
43
+ # let's only keep detections with score > 0.9
44
+ target_sizes = torch.tensor([image.size[::-1]])
45
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
46
+
47
+ # Draw bounding boxes and labels on the image
48
+ draw = ImageDraw.Draw(image)
49
+ for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
50
+ box = [round(i, 2) for i in box.tolist()]
51
+ color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
52
+ draw.rectangle(box, outline=color, width=3)
53
+ label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
54
+ draw.text((box[0], box[1]), label_text, fill=color)
55
+
56
+ return image
57
+
58
+
59
+ def upload_image(file):
60
+ image = Image.open(file.name)
61
+ image_with_boxes = detect_objects(image)
62
+ return image_with_boxes
63
+
64
+ iface = gr.Interface(
65
+ fn=upload_image,
66
+ inputs="file",
67
+ outputs="image",
68
+ title="Object Detection",
69
+ description="Upload an image and detect objects using DETR model.",
70
+ allow_flagging=False
71
+ )
72
+
73
+ iface.launch()
74
+