|
|
|
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
|
from tensorflow.keras.preprocessing.image import img_to_array
|
|
from tensorflow.keras.models import load_model
|
|
from imutils.video import VideoStream
|
|
import numpy as np
|
|
import imutils
|
|
import time
|
|
import cv2
|
|
import os
|
|
|
|
import gradio as gr
|
|
|
|
|
|
prototxtPath = r"assets/model/deploy.prototxt.txt"
|
|
weightsPath = r"assets/model/res10_300x300_ssd_iter_140000.caffemodel"
|
|
faceNet = cv2.dnn.readNet(prototxtPath,weightsPath)
|
|
|
|
|
|
maskNet = load_model("assets/model/mask_detector.keras")
|
|
|
|
|
|
def detect_and_predict_mask(frame, faceNet, maskNet):
|
|
try:
|
|
|
|
(h, w) = frame.shape[:2]
|
|
blob = cv2.dnn.blobFromImage(frame, 1.0, (224,224),(104.0,177.0,123.0) )
|
|
|
|
|
|
faceNet.setInput(blob)
|
|
detections = faceNet.forward()
|
|
print(detections.shape)
|
|
|
|
|
|
faces = []
|
|
locs = []
|
|
preds = []
|
|
|
|
for i in range(0,detections.shape[2]):
|
|
|
|
confidence = detections[0,0,i,2]
|
|
|
|
|
|
if confidence > 0.5:
|
|
|
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
|
(startX, startY, endX, endY) = box.astype("int")
|
|
|
|
|
|
(startX , startY) = (max(0,startX) , max(0,startY))
|
|
(endX, endY) = (min(w-1,endX) , min(h-1,endY))
|
|
|
|
|
|
|
|
face = frame[startY:endY , startX:endX]
|
|
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
|
face = cv2.resize(face, (224,224))
|
|
face = img_to_array(face)
|
|
face = preprocess_input(face)
|
|
|
|
|
|
faces.append(face)
|
|
locs.append((startX, startY, endX, endY))
|
|
|
|
|
|
if len(faces) > 0:
|
|
|
|
faces = np.array(faces,dtype="float32")
|
|
preds = maskNet.predict(faces, batch_size=32)
|
|
|
|
|
|
return (locs, preds)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
def webcam_stream(frame):
|
|
if type(frame)==type(None):
|
|
return
|
|
while True:
|
|
try:
|
|
|
|
frame = imutils.resize(frame,width=400)
|
|
|
|
|
|
(locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet)
|
|
|
|
|
|
for (box, pred) in zip(locs, preds):
|
|
|
|
(startX, startY, endX, endY) = box
|
|
(mask, withoutMask) = pred
|
|
|
|
|
|
label = "Mask" if mask> withoutMask else "No Mask"
|
|
color = (0,255,0) if label=="Mask" else (0,0,255)
|
|
|
|
|
|
label = "{}: {:.2f}%".format(label,max(mask, withoutMask) *100)
|
|
|
|
|
|
cv2.putText(frame,label,(startX,startY-10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
|
|
cv2.rectangle(frame, (startX,startY), (endX,endY),color,2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
return frame
|
|
|
|
|
|
|
|
|
|
|
|
webcam = gr.Image(sources=["webcam"],streaming=True,every="float",mirror_webcam=True)
|
|
output = gr.Image(sources=["webcam"])
|
|
|
|
app = gr.Interface(webcam_stream,inputs=webcam,outputs=output,live=True)
|
|
|
|
|
|
app.launch()
|
|
gr.close_all() |