Spaces:
Sleeping
Sleeping
Commit
·
0361dbf
1
Parent(s):
5dba2dd
Uncommented llm code
Browse files
app.py
CHANGED
|
@@ -16,61 +16,61 @@ from langchain.vectorstores import Chroma
|
|
| 16 |
import os
|
| 17 |
|
| 18 |
st.set_page_config(page_title="pdf-GPT", page_icon="📖", layout="wide")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
# Display conversation history using Streamlit messages
|
| 76 |
def display_conversation(history):
|
|
@@ -174,8 +174,8 @@ def main():
|
|
| 174 |
|
| 175 |
# Search the database for a response based on user input and update session state
|
| 176 |
if user_input:
|
| 177 |
-
|
| 178 |
-
answer = user_input
|
| 179 |
st.session_state["past"].append(user_input)
|
| 180 |
response = answer
|
| 181 |
st.session_state["generated"].append(response)
|
|
|
|
| 16 |
import os
|
| 17 |
|
| 18 |
st.set_page_config(page_title="pdf-GPT", page_icon="📖", layout="wide")
|
| 19 |
+
@st.cache_resource
|
| 20 |
+
def get_model():
|
| 21 |
+
device = torch.device('cpu')
|
| 22 |
+
# device = torch.device('cuda:0')
|
| 23 |
+
|
| 24 |
+
checkpoint = "LaMini-T5-738M"
|
| 25 |
+
checkpoint = "MBZUAI/LaMini-T5-738M"
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 27 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 28 |
+
checkpoint,
|
| 29 |
+
device_map=device,
|
| 30 |
+
torch_dtype = torch.float32,
|
| 31 |
+
# offload_folder= "/model_ck"
|
| 32 |
+
)
|
| 33 |
+
return base_model,tokenizer
|
| 34 |
+
|
| 35 |
+
@st.cache_resource
|
| 36 |
+
def llm_pipeline():
|
| 37 |
+
base_model,tokenizer = get_model()
|
| 38 |
+
pipe = pipeline(
|
| 39 |
+
'text2text-generation',
|
| 40 |
+
model = base_model,
|
| 41 |
+
tokenizer=tokenizer,
|
| 42 |
+
max_length = 512,
|
| 43 |
+
do_sample = True,
|
| 44 |
+
temperature = 0.3,
|
| 45 |
+
top_p = 0.95,
|
| 46 |
+
# device=device
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
local_llm = HuggingFacePipeline(pipeline = pipe)
|
| 50 |
+
return local_llm
|
| 51 |
+
|
| 52 |
+
@st.cache_resource
|
| 53 |
+
def qa_llm():
|
| 54 |
+
llm = llm_pipeline()
|
| 55 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 56 |
+
db = Chroma(persist_directory="db", embedding_function = embeddings)
|
| 57 |
+
retriever = db.as_retriever()
|
| 58 |
+
qa = RetrievalQA.from_chain_type(
|
| 59 |
+
llm=llm,
|
| 60 |
+
chain_type = "stuff",
|
| 61 |
+
retriever = retriever,
|
| 62 |
+
return_source_documents=True
|
| 63 |
+
)
|
| 64 |
+
return qa
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def process_answer(instruction):
|
| 68 |
+
response=''
|
| 69 |
+
instruction = instruction
|
| 70 |
+
qa = qa_llm()
|
| 71 |
+
generated_text = qa(instruction)
|
| 72 |
+
answer = generated_text['result']
|
| 73 |
+
return answer, generated_text
|
| 74 |
|
| 75 |
# Display conversation history using Streamlit messages
|
| 76 |
def display_conversation(history):
|
|
|
|
| 174 |
|
| 175 |
# Search the database for a response based on user input and update session state
|
| 176 |
if user_input:
|
| 177 |
+
answer = process_answer({"query" : user_input})
|
| 178 |
+
# answer = user_input
|
| 179 |
st.session_state["past"].append(user_input)
|
| 180 |
response = answer
|
| 181 |
st.session_state["generated"].append(response)
|