import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import torch import base64 import textwrap from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma from langchain.llms.huggingface_pipeline import HuggingFacePipeline from langchain.chains import RetrievalQA from streamlit_chat import message from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma import os st.set_page_config(page_title="pdf-GPT", page_icon="📖", layout="wide") # @st.cache_resource # def get_model(): # device = torch.device('cpu') # # device = torch.device('cuda:0') # checkpoint = "LaMini-T5-738M" # checkpoint = "MBZUAI/LaMini-T5-738M" # tokenizer = AutoTokenizer.from_pretrained(checkpoint) # base_model = AutoModelForSeq2SeqLM.from_pretrained( # checkpoint, # device_map=device, # torch_dtype = torch.float32, # # offload_folder= "/model_ck" # ) # return base_model,tokenizer # @st.cache_resource # def llm_pipeline(): # base_model,tokenizer = get_model() # pipe = pipeline( # 'text2text-generation', # model = base_model, # tokenizer=tokenizer, # max_length = 512, # do_sample = True, # temperature = 0.3, # top_p = 0.95, # # device=device # ) # local_llm = HuggingFacePipeline(pipeline = pipe) # return local_llm # @st.cache_resource # def qa_llm(): # llm = llm_pipeline() # embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # db = Chroma(persist_directory="db", embedding_function = embeddings) # retriever = db.as_retriever() # qa = RetrievalQA.from_chain_type( # llm=llm, # chain_type = "stuff", # retriever = retriever, # return_source_documents=True # ) # return qa # def process_answer(instruction): # response='' # instruction = instruction # qa = qa_llm() # generated_text = qa(instruction) # answer = generated_text['result'] # return answer, generated_text # Display conversation history using Streamlit messages def display_conversation(history): # st.write(history) for i in range(len(history["generated"])): message(history["past"][i] , is_user=True, key= str(i) + "_user") if isinstance(history["generated"][i],str): message(history["generated"][i] , key= str(i)) else: message(history["generated"][i][0] , key= str(i)) # sources_list = [] # for source in history["generated"][i][1]['source_documents']: # # st.write(source.metadata['source']) # sources_list.append(source.metadata['source']) # message(str(set(sources_list)) , key="sources_"+str(i)) # function to display the PDF of a given file @st.cache_data def displayPDF(file,file_name): # Opening file from file path with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') # Embedding PDF in HTML # pdf_display = f'' # st.write() # pdf_display = f'' pdf_display = f'' # st.write(pdf_display) st.markdown(pdf_display, unsafe_allow_html=True) @st.cache_resource def data_ingestion(file_path,persist_directory): # for root, dirs, files in os.walk("docs"): # for file in files: if file_path.endswith(".pdf"): print(file_path) loader = PDFMinerLoader(file_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500) texts = text_splitter.split_documents(documents) # create embeddings embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # create vector store db = Chroma.from_documents(texts, embeddings, persist_directory="uploaded/db") db.persist() db=None def main(): st.markdown("