|
import torch |
|
import gradio as gr |
|
from transformers import PegasusTokenizer, PegasusForConditionalGeneration |
|
|
|
|
|
MODEL_NAME = 'VishnuPottabatthini/PEGASUS_Large' |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
tokenizer = PegasusTokenizer.from_pretrained(MODEL_NAME) |
|
model = PegasusForConditionalGeneration.from_pretrained(MODEL_NAME).to(device) |
|
|
|
|
|
def summarize(text, state): |
|
try: |
|
|
|
inputs = tokenizer( |
|
text, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=1024 |
|
).to(device) |
|
|
|
|
|
summary_ids = model.generate( |
|
inputs['input_ids'], |
|
attention_mask=inputs['attention_mask'], |
|
max_length=150, |
|
min_length=30, |
|
num_beams=4, |
|
early_stopping=True |
|
) |
|
|
|
|
|
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
return state + "\n" + summary, state + "\n" + summary |
|
|
|
except Exception as e: |
|
return str(e), state |
|
|
|
|
|
mf_summarize = gr.Interface( |
|
fn=summarize, |
|
inputs=[ |
|
gr.Textbox(placeholder="Enter text to summarize...", lines=10), |
|
gr.State(value="") |
|
], |
|
outputs=[ |
|
gr.Textbox(lines=15, label="Summary"), |
|
gr.State() |
|
], |
|
theme="huggingface", |
|
title="Article Summarization", |
|
live=True, |
|
description=( |
|
"Enter a long piece of text to generate a concise summary using a PEGASUS model. " |
|
"This demo uses a custom PEGASUS model from 🤗 Transformers." |
|
) |
|
) |
|
|
|
|
|
mf_summarize.launch() |