Spaces:
No application file
No application file
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
-
|
2 |
-
from pydantic import BaseModel
|
3 |
from transformers import BartTokenizer, BartForConditionalGeneration
|
4 |
import torch
|
5 |
|
6 |
-
# Initialize the FastAPI app
|
7 |
-
app = FastAPI()
|
8 |
-
|
9 |
# Load the fine-tuned BART model and tokenizer from the local directory
|
10 |
MODEL_DIR = './BART model small/model'
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -13,17 +9,12 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
13 |
tokenizer = BartTokenizer.from_pretrained(MODEL_DIR)
|
14 |
model = BartForConditionalGeneration.from_pretrained(MODEL_DIR).to(device)
|
15 |
|
16 |
-
# Define
|
17 |
-
|
18 |
-
text: str
|
19 |
-
|
20 |
-
# API Endpoint for summarization
|
21 |
-
@app.post("/summarize")
|
22 |
-
async def summarize(article: Article):
|
23 |
try:
|
24 |
# Tokenize the input article
|
25 |
inputs = tokenizer(
|
26 |
-
|
27 |
return_tensors="pt",
|
28 |
max_length=1024,
|
29 |
truncation=True
|
@@ -42,8 +33,20 @@ async def summarize(article: Article):
|
|
42 |
# Decode the summary
|
43 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
44 |
|
45 |
-
|
46 |
-
return {"summary": summary}
|
47 |
|
48 |
except Exception as e:
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
from transformers import BartTokenizer, BartForConditionalGeneration
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
5 |
# Load the fine-tuned BART model and tokenizer from the local directory
|
6 |
MODEL_DIR = './BART model small/model'
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
9 |
tokenizer = BartTokenizer.from_pretrained(MODEL_DIR)
|
10 |
model = BartForConditionalGeneration.from_pretrained(MODEL_DIR).to(device)
|
11 |
|
12 |
+
# Define the summarization function
|
13 |
+
def summarize(text):
|
|
|
|
|
|
|
|
|
|
|
14 |
try:
|
15 |
# Tokenize the input article
|
16 |
inputs = tokenizer(
|
17 |
+
text,
|
18 |
return_tensors="pt",
|
19 |
max_length=1024,
|
20 |
truncation=True
|
|
|
33 |
# Decode the summary
|
34 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
35 |
|
36 |
+
return summary
|
|
|
37 |
|
38 |
except Exception as e:
|
39 |
+
return str(e)
|
40 |
+
|
41 |
+
# Create Gradio interface
|
42 |
+
# Textbox input for the article and output for the summary
|
43 |
+
interface = gr.Interface(
|
44 |
+
fn=summarize, # The function to summarize the article
|
45 |
+
inputs="text", # Input is a text box where users can input the article text
|
46 |
+
outputs="text", # Output is a text box displaying the summary
|
47 |
+
title="BART Summarization", # The title of the app
|
48 |
+
description="Enter an article to generate a summary using a fine-tuned BART model."
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the Gradio app
|
52 |
+
interface.launch()
|