Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,62 +9,88 @@ from langchain_community.vectorstores import FAISS
|
|
9 |
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
10 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
11 |
from dotenv import load_dotenv
|
12 |
-
import
|
13 |
-
load_dotenv()
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
-
groq_api_key=os.getenv('groqapi')
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
model_name="Llama3-8b-8192")
|
24 |
|
25 |
-
|
26 |
-
"""
|
27 |
-
Answer the questions based on the provided context only.
|
28 |
-
Please provide the most accurate response based on the question
|
29 |
-
<context>
|
30 |
-
{context}
|
31 |
-
<context>
|
32 |
-
Questions:{input}
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
|
|
37 |
def vector_embedding():
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
st.
|
44 |
-
st.
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if prompt1:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
10 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
11 |
from dotenv import load_dotenv
|
12 |
+
import time
|
|
|
13 |
|
14 |
+
# Load environment variables
|
15 |
+
load_dotenv()
|
16 |
|
17 |
+
groq_api_key = os.getenv('groqapi')
|
18 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
19 |
|
20 |
+
if not groq_api_key or not google_api_key:
|
21 |
+
st.error("API keys are missing. Please check your environment variables.")
|
22 |
+
st.stop()
|
23 |
|
24 |
+
os.environ["GOOGLE_API_KEY"] = google_api_key
|
|
|
25 |
|
26 |
+
st.title("Legal Assistant")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Initialize LLM
|
29 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
|
30 |
+
|
31 |
+
prompt = ChatPromptTemplate.from_template(
|
32 |
+
"""
|
33 |
+
Answer the questions based on the provided context only.
|
34 |
+
Please provide the most accurate response based on the question.
|
35 |
+
<context>
|
36 |
+
{context}
|
37 |
+
<context>
|
38 |
+
Questions: {input}
|
39 |
+
"""
|
40 |
)
|
41 |
|
42 |
+
@st.cache_resource
|
43 |
def vector_embedding():
|
44 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
45 |
+
loader = PyPDFDirectoryLoader("./new")
|
46 |
+
|
47 |
+
# Check if directory exists
|
48 |
+
if not os.path.exists("./new"):
|
49 |
+
st.error("The directory './new' does not exist. Please provide the correct path.")
|
50 |
+
st.stop()
|
51 |
+
|
52 |
+
docs = loader.load()
|
53 |
+
if not docs:
|
54 |
+
st.error("No PDF files found in the './new' directory.")
|
55 |
+
st.stop()
|
56 |
+
|
57 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
58 |
+
final_documents = text_splitter.split_documents(docs[:20])
|
59 |
+
vectors = FAISS.from_documents(final_documents, embeddings)
|
60 |
+
return vectors
|
61 |
+
|
62 |
+
st.session_state.vectors = vector_embedding()
|
63 |
+
|
64 |
+
# Initialize chat history
|
65 |
+
if "chat_history" not in st.session_state:
|
66 |
+
st.session_state.chat_history = []
|
67 |
+
|
68 |
+
# Sidebar for chat history
|
69 |
+
with st.sidebar:
|
70 |
+
st.title("Chat History")
|
71 |
+
if st.session_state.chat_history:
|
72 |
+
for idx, chat in enumerate(st.session_state.chat_history):
|
73 |
+
st.write(f"Q{idx+1}: {chat['question']}")
|
74 |
+
st.write(f"A{idx+1}: {chat['answer']}")
|
75 |
+
else:
|
76 |
+
st.write("No chat history yet.")
|
77 |
+
|
78 |
+
# User input for question
|
79 |
+
prompt1 = st.text_input("Enter Your Question From Documents")
|
80 |
|
81 |
if prompt1:
|
82 |
+
with st.spinner("Retrieving the best answer..."):
|
83 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
84 |
+
retriever = st.session_state.vectors.as_retriever()
|
85 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
86 |
+
|
87 |
+
start = time.process_time()
|
88 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
89 |
+
elapsed_time = time.process_time() - start
|
90 |
+
|
91 |
+
answer = response.get('answer', "No answer found.")
|
92 |
+
st.success(f"Response Time: {elapsed_time:.2f} seconds")
|
93 |
+
st.write(answer)
|
94 |
+
|
95 |
+
# Store the question and answer in chat history
|
96 |
+
st.session_state.chat_history.append({"question": prompt1, "answer": answer})
|