VishnuRamDebyez commited on
Commit
d2d8349
·
verified ·
1 Parent(s): 158452e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from langchain_groq import ChatGroq
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.chains.combine_documents import create_stuff_documents_chain
6
+ from langchain_core.prompts import ChatPromptTemplate
7
+ from langchain.chains import create_retrieval_chain
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_community.document_loaders import PyPDFDirectoryLoader
10
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
11
+ from dotenv import load_dotenv
12
+ import os
13
+ load_dotenv()
14
+
15
+ ## load the GROQ And OpenAI API KEY
16
+ groq_api_key=os.getenv('GROQ_API_KEY')
17
+ os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")
18
+
19
+ st.title("Gemma Model Document Q&A")
20
+
21
+ llm=ChatGroq(groq_api_key=groq_api_key,
22
+ model_name="Llama3-8b-8192")
23
+
24
+ prompt=ChatPromptTemplate.from_template(
25
+ """
26
+ Answer the questions based on the provided context only.
27
+ Please provide the most accurate response based on the question
28
+ <context>
29
+ {context}
30
+ <context>
31
+ Questions:{input}
32
+
33
+ """
34
+ )
35
+
36
+ def vector_embedding():
37
+
38
+ if "vectors" not in st.session_state:
39
+
40
+ st.session_state.embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
41
+ st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
42
+ st.session_state.docs=st.session_state.loader.load() ## Document Loading
43
+ st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation
44
+ st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting
45
+ st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
46
+
47
+
48
+
49
+
50
+
51
+ prompt1=st.text_input("Enter Your Question From Doduments")
52
+
53
+
54
+ if st.button("Documents Embedding"):
55
+ vector_embedding()
56
+ st.write("Vector Store DB Is Ready")
57
+
58
+ import time
59
+
60
+
61
+
62
+ if prompt1:
63
+ document_chain=create_stuff_documents_chain(llm,prompt)
64
+ retriever=st.session_state.vectors.as_retriever()
65
+ retrieval_chain=create_retrieval_chain(retriever,document_chain)
66
+ start=time.process_time()
67
+ response=retrieval_chain.invoke({'input':prompt1})
68
+ print("Response time :",time.process_time()-start)
69
+ st.write(response['answer'])
70
+
71
+ # With a streamlit expander
72
+ with st.expander("Document Similarity Search"):
73
+ # Find the relevant chunks
74
+ for i, doc in enumerate(response["context"]):
75
+ st.write(doc.page_content)
76
+ st.write("--------------------------------")