import streamlit as st import os from langchain_groq import ChatGroq from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFDirectoryLoader from langchain_google_genai import GoogleGenerativeAIEmbeddings from dotenv import load_dotenv import time # Load environment variables load_dotenv() # Set page configuration st.set_page_config(page_title="Legal Assistant", layout="wide") # Create a unique key for the session state to help with resetting if 'reset_key' not in st.session_state: st.session_state['reset_key'] = 0 # Function to reset the entire session state def reset_session_state(): # Increment reset key to force a complete reset st.session_state['reset_key'] += 1 # Reset specific session state variables st.session_state['last_response'] = None st.session_state['current_question'] = '' # Title st.title("Legal Assistant") # Sidebar setup st.sidebar.title("Chat History") # API Key Configuration groq_api_key = os.getenv('groqapi') os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY") # Initialize chat history if not exists if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] # LLM and Prompt Setup llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") prompt = ChatPromptTemplate.from_template( """ Answer the questions based on the provided context only. Please provide the most accurate response based on the question {context} Questions:{input} """ ) def vector_embedding(): """Perform vector embedding of documents""" if "vectors" not in st.session_state: st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") st.session_state.loader = PyPDFDirectoryLoader("./new") # Data Ingestion st.session_state.docs = st.session_state.loader.load() # Document Loading st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) # splitting st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Perform vector embedding vector_embedding() # Function to add to chat history def add_to_chat_history(question, answer): st.session_state.chat_history.append({ 'question': question, 'answer': answer }) # Main content area def main(): # Clear chat button clear_button = st.button("Clear Chat") # Handle clear chat functionality if clear_button: reset_session_state() # Create a unique key for the text input to force reset text_input_key = f'question_input_{st.session_state["reset_key"]}' # Text input with reset mechanism prompt1 = st.text_input( "Enter Your Question", key=text_input_key, value=st.session_state.get('current_question', '') ) # Process question if exists if prompt1: try: # Store current question st.session_state['current_question'] = prompt1 # Create document and retrieval chains document_chain = create_stuff_documents_chain(llm, prompt) retriever = st.session_state.vectors.as_retriever() retrieval_chain = create_retrieval_chain(retriever, document_chain) # Generate response start = time.process_time() response = retrieval_chain.invoke({'input': prompt1}) response_time = time.process_time() - start # Store and display response st.session_state['last_response'] = response['answer'] # Add to chat history add_to_chat_history(prompt1, response['answer']) except Exception as e: st.error(f"An error occurred: {e}") # Display the last response if exists if st.session_state.get('last_response'): st.write(st.session_state['last_response']) # Sidebar content # Clear chat history button if st.sidebar.button("Clear Chat History"): st.session_state.chat_history = [] # Display chat history st.sidebar.write("### Previous Questions") for idx, chat in enumerate(reversed(st.session_state.chat_history), 1): # Expander for each chat history item with st.sidebar.expander(f"Question {len(st.session_state.chat_history) - idx + 1}"): st.write(f"**Question:** {chat['question']}") st.write(f"**Answer:** {chat['answer']}") # Run the main function main()