Spaces:
Sleeping
Sleeping
Create chroma_utils.py
Browse files- chroma_utils.py +52 -0
chroma_utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, UnstructuredHTMLLoader
|
2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
3 |
+
from langchain_openai import OpenAIEmbeddings
|
4 |
+
from langchain_chroma import Chroma
|
5 |
+
from typing import List
|
6 |
+
from langchain_core.documents import Document
|
7 |
+
import os
|
8 |
+
|
9 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
|
10 |
+
embedding_function = OpenAIEmbeddings()
|
11 |
+
vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=embedding_function)
|
12 |
+
|
13 |
+
def load_and_split_document(file_path: str) -> List[Document]:
|
14 |
+
if file_path.endswith('.pdf'):
|
15 |
+
loader = PyPDFLoader(file_path)
|
16 |
+
elif file_path.endswith('.docx'):
|
17 |
+
loader = Docx2txtLoader(file_path)
|
18 |
+
elif file_path.endswith('.html'):
|
19 |
+
loader = UnstructuredHTMLLoader(file_path)
|
20 |
+
else:
|
21 |
+
raise ValueError(f"Unsupported file type: {file_path}")
|
22 |
+
|
23 |
+
documents = loader.load()
|
24 |
+
return text_splitter.split_documents(documents)
|
25 |
+
|
26 |
+
def index_document_to_chroma(file_path: str, file_id: int) -> bool:
|
27 |
+
try:
|
28 |
+
splits = load_and_split_document(file_path)
|
29 |
+
|
30 |
+
# Add metadata to each split
|
31 |
+
for split in splits:
|
32 |
+
split.metadata['file_id'] = file_id
|
33 |
+
|
34 |
+
vectorstore.add_documents(splits)
|
35 |
+
# vectorstore.persist()
|
36 |
+
return True
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error indexing document: {e}")
|
39 |
+
return False
|
40 |
+
|
41 |
+
def delete_doc_from_chroma(file_id: int):
|
42 |
+
try:
|
43 |
+
docs = vectorstore.get(where={"file_id": file_id})
|
44 |
+
print(f"Found {len(docs['ids'])} document chunks for file_id {file_id}")
|
45 |
+
|
46 |
+
vectorstore._collection.delete(where={"file_id": file_id})
|
47 |
+
print(f"Deleted all documents with file_id {file_id}")
|
48 |
+
|
49 |
+
return True
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error deleting document with file_id {file_id} from Chroma: {str(e)}")
|
52 |
+
return False
|