Spaces:
Sleeping
Sleeping
Create chroma_utils.py
Browse files- chroma_utils.py +52 -0
chroma_utils.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, UnstructuredHTMLLoader
|
| 2 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain_openai import OpenAIEmbeddings
|
| 4 |
+
from langchain_chroma import Chroma
|
| 5 |
+
from typing import List
|
| 6 |
+
from langchain_core.documents import Document
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
|
| 10 |
+
embedding_function = OpenAIEmbeddings()
|
| 11 |
+
vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=embedding_function)
|
| 12 |
+
|
| 13 |
+
def load_and_split_document(file_path: str) -> List[Document]:
|
| 14 |
+
if file_path.endswith('.pdf'):
|
| 15 |
+
loader = PyPDFLoader(file_path)
|
| 16 |
+
elif file_path.endswith('.docx'):
|
| 17 |
+
loader = Docx2txtLoader(file_path)
|
| 18 |
+
elif file_path.endswith('.html'):
|
| 19 |
+
loader = UnstructuredHTMLLoader(file_path)
|
| 20 |
+
else:
|
| 21 |
+
raise ValueError(f"Unsupported file type: {file_path}")
|
| 22 |
+
|
| 23 |
+
documents = loader.load()
|
| 24 |
+
return text_splitter.split_documents(documents)
|
| 25 |
+
|
| 26 |
+
def index_document_to_chroma(file_path: str, file_id: int) -> bool:
|
| 27 |
+
try:
|
| 28 |
+
splits = load_and_split_document(file_path)
|
| 29 |
+
|
| 30 |
+
# Add metadata to each split
|
| 31 |
+
for split in splits:
|
| 32 |
+
split.metadata['file_id'] = file_id
|
| 33 |
+
|
| 34 |
+
vectorstore.add_documents(splits)
|
| 35 |
+
# vectorstore.persist()
|
| 36 |
+
return True
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error indexing document: {e}")
|
| 39 |
+
return False
|
| 40 |
+
|
| 41 |
+
def delete_doc_from_chroma(file_id: int):
|
| 42 |
+
try:
|
| 43 |
+
docs = vectorstore.get(where={"file_id": file_id})
|
| 44 |
+
print(f"Found {len(docs['ids'])} document chunks for file_id {file_id}")
|
| 45 |
+
|
| 46 |
+
vectorstore._collection.delete(where={"file_id": file_id})
|
| 47 |
+
print(f"Deleted all documents with file_id {file_id}")
|
| 48 |
+
|
| 49 |
+
return True
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error deleting document with file_id {file_id} from Chroma: {str(e)}")
|
| 52 |
+
return False
|