VishnuRamDebyez commited on
Commit
929d2ae
·
verified ·
1 Parent(s): 8cbff69

Create langchain_utils.py

Browse files
Files changed (1) hide show
  1. langchain_utils.py +48 -0
langchain_utils.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_openai import ChatOpenAI
2
+ from langchain_core.output_parsers import StrOutputParser
3
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
4
+ from langchain.chains import create_history_aware_retriever, create_retrieval_chain
5
+ from langchain.chains.combine_documents import create_stuff_documents_chain
6
+ from typing import List
7
+ from langchain_core.documents import Document
8
+ import os
9
+ from chroma_utils import vectorstore
10
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 2})
11
+
12
+ output_parser = StrOutputParser()
13
+
14
+
15
+
16
+
17
+ # Set up prompts and chains
18
+ contextualize_q_system_prompt = (
19
+ "Given a chat history and the latest user question "
20
+ "which might reference context in the chat history, "
21
+ "formulate a standalone question which can be understood "
22
+ "without the chat history. Do NOT answer the question, "
23
+ "just reformulate it if needed and otherwise return it as is."
24
+ )
25
+
26
+ contextualize_q_prompt = ChatPromptTemplate.from_messages([
27
+ ("system", contextualize_q_system_prompt),
28
+ MessagesPlaceholder("chat_history"),
29
+ ("human", "{input}"),
30
+ ])
31
+
32
+
33
+
34
+ qa_prompt = ChatPromptTemplate.from_messages([
35
+ ("system", "You are a helpful AI assistant. Use the following context to answer the user's question."),
36
+ ("system", "Context: {context}"),
37
+ MessagesPlaceholder(variable_name="chat_history"),
38
+ ("human", "{input}")
39
+ ])
40
+
41
+
42
+
43
+ def get_rag_chain(model="gpt-4o-mini"):
44
+ llm = ChatOpenAI(model=model)
45
+ history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
46
+ question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
47
+ rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
48
+ return rag_chain