File size: 6,555 Bytes
802d0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# app.py

import random
import csv
import gradio as gr
import pandas as pd
import tempfile

# Word lists
nouns = [
    "dog", "cat", "child", "teacher", "artist", "bird", "river", "mountain",
    "book", "city", "car", "tree", "flower", "student", "computer", "phone",
    "house", "garden", "song", "idea", "scientist", "engineer", "doctor",
    "chef", "musician", "athlete", "writer", "poet", "farmer", "pilot"
]

adjectives = [
    "quick", "lazy", "beautiful", "tall", "short", "happy", "sad", "bright",
    "dark", "colorful", "quiet", "loud", "new", "old", "young", "ancient",
    "modern", "cold", "warm", "soft", "hard", "heavy", "light", "calm",
    "stormy", "fresh", "strong", "weak", "brave"
]

verbs = [
    "run", "jump", "paint", "read", "fly", "write", "sing", "build",
    "create", "discover", "learn", "teach", "drive", "grow", "think",
    "talk", "listen", "play", "see", "walk", "swim", "code", "design",
    "cook", "dance", "draw", "study", "explore", "invent", "research"
]

adverbs = [
    "quickly", "slowly", "gracefully", "happily", "sadly", "quietly", "loudly",
    "brightly", "softly", "carefully", "eagerly", "angrily", "easily", "hardly",
    "rarely", "often", "never", "always", "sometimes", "soon", "daily", "patiently",
    "politely", "proudly", "silently", "warmly", "well", "badly", "closely", "deeply"
]

prepositions = [
    "in", "on", "over", "under", "beside", "with", "without", "near",
    "between", "through", "against", "among", "around", "before", "after",
    "inside", "outside", "above", "below", "across", "behind", "beyond",
    "during", "for", "from", "into", "like", "off", "toward"
]

articles = ["the", "a", "an"]

conjunctions = ["and", "but", "so", "because", "when", "while", "although", "if", "unless", "since"]

# Semantic rules: mapping nouns to appropriate verbs
noun_verb_map = {
    "dog": ["run", "jump", "bark", "play", "walk"],
    "cat": ["meow", "sleep", "jump", "play", "purr"],
    "child": ["play", "learn", "read", "laugh", "grow"],
    "teacher": ["teach", "explain", "guide", "help", "learn"],
    "artist": ["paint", "draw", "create", "design", "imagine"],
    "bird": ["fly", "sing", "chirp", "nest", "soar"],
    "river": ["flow", "run", "wind", "bend", "swell"],
    "mountain": ["stand", "tower", "rise", "loom", "shadow"],
    "book": ["tell", "describe", "illustrate", "explain", "reveal"],
    "city": ["grow", "expand", "develop", "bustle", "sleep"],
    "car": ["drive", "speed", "stop", "park", "honk"],
    "tree": ["grow", "sway", "stand", "shed", "bloom"],
    "flower": ["bloom", "grow", "wilt", "open", "close"],
    "student": ["study", "learn", "read", "write", "graduate"],
    "computer": ["compute", "process", "run", "crash", "boot"],
    "phone": ["ring", "vibrate", "charge", "die", "connect"],
    "house": ["stand", "shelter", "protect", "age", "burn"],
    "garden": ["grow", "bloom", "flourish", "wilt", "produce"],
    "song": ["play", "sound", "echo", "resonate", "end"],
    "idea": ["form", "grow", "develop", "emerge", "inspire"],
    "scientist": ["research", "discover", "experiment", "study", "invent"],
    "engineer": ["design", "build", "develop", "test", "solve"],
    "doctor": ["heal", "diagnose", "treat", "operate", "care"],
    "chef": ["cook", "prepare", "taste", "create", "serve"],
    "musician": ["play", "compose", "perform", "sing", "record"],
    "athlete": ["run", "train", "compete", "win", "lose"],
    "writer": ["write", "create", "imagine", "edit", "publish"],
    "poet": ["write", "compose", "imagine", "express", "rhyme"],
    "farmer": ["grow", "plant", "harvest", "plow", "raise"],
    "pilot": ["fly", "navigate", "land", "take off", "command"]
}

# Sentence templates
templates = [
    "{Article} {adjective} {noun} {adverb} {verb}s {preposition} {article} {adjective} {noun2}.",
    "{Article} {noun} {verb}s {preposition} {article} {noun2} {conjunction} {verb2}s {adverb}.",
    "{Noun_plural} {adverb} {verb} {preposition} {noun2}.",
    "{Noun} {verb}s {preposition} {article} {noun2} {conjunction} {article} {noun} {verb2}s.",
    "{Article} {adjective} {noun} {verb}s {preposition} {noun2} {conjunction} {adverb} {verb2}s.",
    "{Noun} {verb}s {article} {noun2} {preposition} {noun}."
]

def generate_sentence():
    template = random.choice(templates)
    noun = random.choice(nouns)
    # Get appropriate verbs for noun
    verbs_for_noun = noun_verb_map.get(noun, verbs)
    verb = random.choice(verbs_for_noun)

    noun2 = random.choice(nouns)
    # Ensure noun2 is different from noun
    while noun2 == noun:
        noun2 = random.choice(nouns)
    # Get appropriate verbs for noun2
    verbs_for_noun2 = noun_verb_map.get(noun2, verbs)
    verb2 = random.choice(verbs_for_noun2)

    sentence = template.format(
        Article=random.choice(articles).capitalize(),
        article=random.choice(articles),
        adjective=random.choice(adjectives),
        noun=noun,
        noun2=noun2,
        Noun=noun.capitalize(),
        Noun_plural=noun.capitalize() + "s",
        verb=verb,
        verb2=verb2,
        adverb=random.choice(adverbs),
        preposition=random.choice(prepositions),
        conjunction=random.choice(conjunctions)
    )
    # Capitalize the first letter and ensure proper punctuation
    sentence = sentence.capitalize()
    if not sentence.endswith('.'):
        sentence += '.'
    return sentence

def generate_sentences(num_sentences):
    sentences = [generate_sentence() for _ in range(int(num_sentences))]
    df = pd.DataFrame(sentences, columns=["sentence"])
    # Save to a temporary CSV file
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
    df.to_csv(temp_file.name, index=False)
    return temp_file.name

def generate_and_download(num_sentences):
    csv_file = generate_sentences(num_sentences)
    return csv_file

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # Sentence Dataset Generator with Semantic Rules

        Enter the number of sentences you want to generate, and download a CSV file containing the sentences.

        This generator uses semantic rules to create more coherent and meaningful sentences.
        """
    )
    num_sentences = gr.Number(label="Number of Sentences", value=1000, precision=0)
    output = gr.File(label="Download CSV")
    generate_button = gr.Button("Generate Sentences")
    generate_button.click(
        fn=generate_and_download,
        inputs=num_sentences,
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()