File size: 9,161 Bytes
be10055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import logging
import warnings

from minigpt4.common.registry import registry
from minigpt4.datasets.builders.base_dataset_builder import BaseDatasetBuilder
from minigpt4.datasets.datasets.cc_sbu_dataset import CCSBUDataset, CCSBUAlignDataset
from minigpt4.datasets.datasets.mimic_cxr_dataset import MimicCxrDataset
from minigpt4.datasets.datasets.radvqa_dataset import RadVQADataset
from minigpt4.datasets.datasets.rsna_dataset import RSNADataset,ReferRSNADataset,IdentifyRSNADataset
from minigpt4.datasets.datasets.nlst_dataset import NlstDataset,ReferNLSTDataset,IdentifyNLSTDataset
from minigpt4.datasets.datasets.SLAKE_dataset import GroundingSLAKEDatase

@registry.register_builder("cc_sbu_align")
class CCSBUAlignBuilder(BaseDatasetBuilder):
    train_dataset_cls = CCSBUAlignDataset

    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/cc_sbu/align.yaml",
    }

    def build_datasets(self):
        # at this point, all the annotations and image/videos should be all downloaded to the specified locations.
        logging.info("Building datasets...")
        self.build_processors()

        build_info = self.config.build_info
        storage_path = build_info.storage

        datasets = dict()

        if not os.path.exists(storage_path):
            warnings.warn("storage path {} does not exist.".format(storage_path))

        # create datasets
        dataset_cls = self.train_dataset_cls
        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors["train"],
            text_processor=self.text_processors["train"],
            ann_paths=[os.path.join(storage_path, 'filter_cap.json')],
            vis_root=os.path.join(storage_path, 'image'),
        )

        return datasets
    
@registry.register_builder("mimic_cxr")
class MimicCxrBuilder(BaseDatasetBuilder):
    train_dataset_cls = MimicCxrDataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/mimic_cxr/mimic_cxr.yaml",
    }

    def build_datasets(self):
        logging.info("Building MIMIC dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )


        return datasets
    
@registry.register_builder("radvqa")
class RadVQABuilder(BaseDatasetBuilder):
    train_dataset_cls = RadVQADataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/radvqa/radvqa.yaml",
    }
    def build_datasets(self):
        logging.info("Building RADVQA datasets...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )


        return datasets
    
@registry.register_builder("rsna")
class RSNABuilder(BaseDatasetBuilder):
    train_dataset_cls = RSNADataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/rsna/rsna.yaml",
    }
    def build_datasets(self):
        logging.info("Building RSNA dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )
        return datasets

@registry.register_builder("refer_rsna")
class ReferRSNABuilder(BaseDatasetBuilder):
    train_dataset_cls = ReferRSNADataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/refer_rsna/refer_rsna.yaml",
    }

    def build_datasets(self):
        logging.info("Building [refer] RSNA datasets...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )
        return datasets
    
@registry.register_builder("identify_rsna")
class IdentifyRSNABuilder(BaseDatasetBuilder):
    train_dataset_cls = IdentifyRSNADataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/identify_rsna/identify_rsna.yaml",
    }
    def build_datasets(self):
        logging.info("Building [identify] RSNA dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )
        return datasets
    
    
@registry.register_builder("nlst")
class NlstBuilder(BaseDatasetBuilder):
    train_dataset_cls = NlstDataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/nlst/nlst.yaml",
    }
    def build_datasets(self):
        logging.info("Building NLST dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )

        return datasets
    
@registry.register_builder("refer_nlst")
class ReferNLSTBuilder(BaseDatasetBuilder):
    train_dataset_cls = NlstDataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/refer_nlst/refer_nlst.yaml",
    }
    def build_datasets(self):
        logging.info("Building [refer] NLST dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )

        return datasets

@registry.register_builder("identify_nlst")
class IdentifyNLSTBuilder(BaseDatasetBuilder):
    train_dataset_cls = NlstDataset
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/identify_nlst/identify_nlst.yaml",
    }
    def build_datasets(self):
        logging.info("Building [identify] NLST dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )

        return datasets
    
@registry.register_builder("grounding_SLAKE")
class GroundingSLAKEBuilder(BaseDatasetBuilder):
    train_dataset_cls = GroundingSLAKEDatase
    DATASET_CONFIG_DICT = {
        "default": "configs/datasets/grounding_SLAKE/grounding_SLAKE.yaml",
    }

    def build_datasets(self):
        logging.info("Building [grounding] NLST dataset...")
        self.build_processors()
        build_info = self.config.build_info
        datasets = dict()

        dataset_cls = self.train_dataset_cls

        datasets['train'] = dataset_cls(
            vis_processor=self.vis_processors['train'],
            text_processor=self.text_processors['train'],
            ann_path=build_info.ann_path,
            vis_root=build_info.image_path,
        )

        return datasets



# @registry.register_builder("detect_mimic")
# class DetectMIMICBuilder(BaseDatasetBuilder):
#     train_dataset_cls = Detect_MIMIC
#     DATASET_CONFIG_DICT = {
#         "default": "configs/datasets/detect_mimic/detect_mimic.yaml",
#     }
#     def build_datasets(self):
#         logging.info("Building NLST dataset...")
#         self.build_processors()
#         build_info = self.config.build_info
#         datasets = dict()

#         dataset_cls = self.train_dataset_cls

#         datasets['train'] = dataset_cls(
#             vis_processor=self.vis_processors['train'],
#             text_processor=self.text_processors['train'],
#             ann_path=build_info.ann_path,
#             vis_root=build_info.image_path,
#         )

#         return datasets