Spaces:
Runtime error
Runtime error
File size: 9,161 Bytes
be10055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import logging
import warnings
from minigpt4.common.registry import registry
from minigpt4.datasets.builders.base_dataset_builder import BaseDatasetBuilder
from minigpt4.datasets.datasets.cc_sbu_dataset import CCSBUDataset, CCSBUAlignDataset
from minigpt4.datasets.datasets.mimic_cxr_dataset import MimicCxrDataset
from minigpt4.datasets.datasets.radvqa_dataset import RadVQADataset
from minigpt4.datasets.datasets.rsna_dataset import RSNADataset,ReferRSNADataset,IdentifyRSNADataset
from minigpt4.datasets.datasets.nlst_dataset import NlstDataset,ReferNLSTDataset,IdentifyNLSTDataset
from minigpt4.datasets.datasets.SLAKE_dataset import GroundingSLAKEDatase
@registry.register_builder("cc_sbu_align")
class CCSBUAlignBuilder(BaseDatasetBuilder):
train_dataset_cls = CCSBUAlignDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/cc_sbu/align.yaml",
}
def build_datasets(self):
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
logging.info("Building datasets...")
self.build_processors()
build_info = self.config.build_info
storage_path = build_info.storage
datasets = dict()
if not os.path.exists(storage_path):
warnings.warn("storage path {} does not exist.".format(storage_path))
# create datasets
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors["train"],
text_processor=self.text_processors["train"],
ann_paths=[os.path.join(storage_path, 'filter_cap.json')],
vis_root=os.path.join(storage_path, 'image'),
)
return datasets
@registry.register_builder("mimic_cxr")
class MimicCxrBuilder(BaseDatasetBuilder):
train_dataset_cls = MimicCxrDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/mimic_cxr/mimic_cxr.yaml",
}
def build_datasets(self):
logging.info("Building MIMIC dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("radvqa")
class RadVQABuilder(BaseDatasetBuilder):
train_dataset_cls = RadVQADataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/radvqa/radvqa.yaml",
}
def build_datasets(self):
logging.info("Building RADVQA datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("rsna")
class RSNABuilder(BaseDatasetBuilder):
train_dataset_cls = RSNADataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/rsna/rsna.yaml",
}
def build_datasets(self):
logging.info("Building RSNA dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("refer_rsna")
class ReferRSNABuilder(BaseDatasetBuilder):
train_dataset_cls = ReferRSNADataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/refer_rsna/refer_rsna.yaml",
}
def build_datasets(self):
logging.info("Building [refer] RSNA datasets...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("identify_rsna")
class IdentifyRSNABuilder(BaseDatasetBuilder):
train_dataset_cls = IdentifyRSNADataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/identify_rsna/identify_rsna.yaml",
}
def build_datasets(self):
logging.info("Building [identify] RSNA dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("nlst")
class NlstBuilder(BaseDatasetBuilder):
train_dataset_cls = NlstDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/nlst/nlst.yaml",
}
def build_datasets(self):
logging.info("Building NLST dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("refer_nlst")
class ReferNLSTBuilder(BaseDatasetBuilder):
train_dataset_cls = NlstDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/refer_nlst/refer_nlst.yaml",
}
def build_datasets(self):
logging.info("Building [refer] NLST dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("identify_nlst")
class IdentifyNLSTBuilder(BaseDatasetBuilder):
train_dataset_cls = NlstDataset
DATASET_CONFIG_DICT = {
"default": "configs/datasets/identify_nlst/identify_nlst.yaml",
}
def build_datasets(self):
logging.info("Building [identify] NLST dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
@registry.register_builder("grounding_SLAKE")
class GroundingSLAKEBuilder(BaseDatasetBuilder):
train_dataset_cls = GroundingSLAKEDatase
DATASET_CONFIG_DICT = {
"default": "configs/datasets/grounding_SLAKE/grounding_SLAKE.yaml",
}
def build_datasets(self):
logging.info("Building [grounding] NLST dataset...")
self.build_processors()
build_info = self.config.build_info
datasets = dict()
dataset_cls = self.train_dataset_cls
datasets['train'] = dataset_cls(
vis_processor=self.vis_processors['train'],
text_processor=self.text_processors['train'],
ann_path=build_info.ann_path,
vis_root=build_info.image_path,
)
return datasets
# @registry.register_builder("detect_mimic")
# class DetectMIMICBuilder(BaseDatasetBuilder):
# train_dataset_cls = Detect_MIMIC
# DATASET_CONFIG_DICT = {
# "default": "configs/datasets/detect_mimic/detect_mimic.yaml",
# }
# def build_datasets(self):
# logging.info("Building NLST dataset...")
# self.build_processors()
# build_info = self.config.build_info
# datasets = dict()
# dataset_cls = self.train_dataset_cls
# datasets['train'] = dataset_cls(
# vis_processor=self.vis_processors['train'],
# text_processor=self.text_processors['train'],
# ann_path=build_info.ann_path,
# vis_root=build_info.image_path,
# )
# return datasets
|