Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# GLIDE: https://github.com/openai/glide-text2im | |
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
# -------------------------------------------------------- | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import xformers.ops | |
from einops import rearrange | |
from timm.models.vision_transformer import Mlp, Attention as Attention_ | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
def t2i_modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
class MultiHeadCrossAttention(nn.Module): | |
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., **block_kwargs): | |
super(MultiHeadCrossAttention, self).__init__() | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.head_dim = d_model // num_heads | |
self.q_linear = nn.Linear(d_model, d_model) | |
self.kv_linear = nn.Linear(d_model, d_model*2) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(d_model, d_model) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, cond, mask=None): | |
# query/value: img tokens; key: condition; mask: if padding tokens | |
B, N, C = x.shape | |
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) | |
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) | |
k, v = kv.unbind(2) | |
attn_bias = None | |
if mask is not None: | |
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) | |
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) | |
x = x.view(B, -1, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class AttentionKVCompress(Attention_): | |
"""Multi-head Attention block with KV token compression and qk norm.""" | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=True, | |
sampling='conv', | |
sr_ratio=1, | |
qk_norm=False, | |
**block_kwargs, | |
): | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
""" | |
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs) | |
self.sampling=sampling # ['conv', 'ave', 'uniform', 'uniform_every'] | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1 and sampling == 'conv': | |
# Avg Conv Init. | |
self.sr = nn.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio) | |
self.sr.weight.data.fill_(1/sr_ratio**2) | |
self.sr.bias.data.zero_() | |
self.norm = nn.LayerNorm(dim) | |
if qk_norm: | |
self.q_norm = nn.LayerNorm(dim) | |
self.k_norm = nn.LayerNorm(dim) | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None): | |
if sampling is None or scale_factor == 1: | |
return tensor | |
B, N, C = tensor.shape | |
if sampling == 'uniform_every': | |
return tensor[:, ::scale_factor], int(N // scale_factor) | |
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2) | |
new_H, new_W = int(H / scale_factor), int(W / scale_factor) | |
new_N = new_H * new_W | |
if sampling == 'ave': | |
tensor = F.interpolate( | |
tensor, scale_factor=1 / scale_factor, mode='nearest' | |
).permute(0, 2, 3, 1) | |
elif sampling == 'uniform': | |
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1) | |
elif sampling == 'conv': | |
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1) | |
tensor = self.norm(tensor) | |
else: | |
raise ValueError | |
return tensor.reshape(B, new_N, C).contiguous(), new_N | |
def forward(self, x, mask=None, HW=None, block_id=None): | |
B, N, C = x.shape | |
new_N = N | |
if HW is None: | |
H = W = int(N ** 0.5) | |
else: | |
H, W = HW | |
qkv = self.qkv(x).reshape(B, N, 3, C) | |
q, k, v = qkv.unbind(2) | |
dtype = q.dtype | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
# KV compression | |
if self.sr_ratio > 1: | |
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling) | |
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling) | |
q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) | |
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype) | |
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype) | |
use_fp32_attention = getattr(self, 'fp32_attention', False) # necessary for NAN loss | |
if use_fp32_attention: | |
q, k, v = q.float(), k.float(), v.float() | |
attn_bias = None | |
if mask is not None: | |
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) | |
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf')) | |
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) | |
x = x.view(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
################################################################################# | |
# AMP attention with fp32 softmax to fix loss NaN problem during training # | |
################################################################################# | |
class Attention(Attention_): | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
use_fp32_attention = getattr(self, 'fp32_attention', False) | |
if use_fp32_attention: | |
q, k = q.float(), k.float() | |
with torch.cuda.amp.autocast(enabled=not use_fp32_attention): | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class T2IFinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5) | |
self.out_channels = out_channels | |
def forward(self, x, t): | |
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) | |
x = t2i_modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class MaskFinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True) | |
) | |
def forward(self, x, t): | |
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DecoderLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, decoder_hidden_size): | |
super().__init__() | |
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, t): | |
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) | |
x = modulate(self.norm_decoder(x), shift, scale) | |
x = self.linear(x) | |
return x | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
def dtype(self): | |
# 返回模型参数的数据类型 | |
return next(self.parameters()).dtype | |
class SizeEmbedder(TimestepEmbedder): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.outdim = hidden_size | |
def forward(self, s, bs): | |
if s.ndim == 1: | |
s = s[:, None] | |
assert s.ndim == 2 | |
if s.shape[0] != bs: | |
s = s.repeat(bs//s.shape[0], 1) | |
assert s.shape[0] == bs | |
b, dims = s.shape[0], s.shape[1] | |
s = rearrange(s, "b d -> (b d)") | |
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) | |
s_emb = self.mlp(s_freq) | |
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) | |
return s_emb | |
def dtype(self): | |
# 返回模型参数的数据类型 | |
return next(self.parameters()).dtype | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
class CaptionEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120): | |
super().__init__() | |
self.y_proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0) | |
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return caption | |
def forward(self, caption, train, force_drop_ids=None): | |
if train: | |
assert caption.shape[2:] == self.y_embedding.shape | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption = self.token_drop(caption, force_drop_ids) | |
caption = self.y_proj(caption) | |
return caption | |
class CaptionEmbedderDoubleBr(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120): | |
super().__init__() | |
self.proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0) | |
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5) | |
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, global_caption, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return global_caption, caption | |
def forward(self, caption, train, force_drop_ids=None): | |
assert caption.shape[2: ] == self.y_embedding.shape | |
global_caption = caption.mean(dim=2).squeeze() | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) | |
y_embed = self.proj(global_caption) | |
return y_embed, caption |