File size: 5,303 Bytes
2ee547c
 
 
d2c9447
2ee547c
 
 
88182e3
 
 
 
 
2ee547c
7dcbe3e
2ee547c
 
 
 
 
5b66768
 
5a8e6a9
5b66768
 
 
 
 
 
6624e83
4f9ba28
ace0225
5b66768
 
 
 
37d83d9
69bfe26
37d83d9
5e2b380
 
 
2ee547c
c27c7f2
2ee547c
10802ab
 
 
d517d58
cac49fb
 
 
b02feb4
10802ab
ace0225
10802ab
 
 
 
 
 
 
 
d517d58
 
10802ab
 
d517d58
2ee547c
37d83d9
 
 
c27c7f2
ec357c2
 
 
 
37d83d9
ec357c2
e3af9a2
ec357c2
a3b42bd
c6d97b5
 
 
ec357c2
a3b42bd
 
ec357c2
a3b42bd
87ab216
 
ec357c2
a3b42bd
 
ec357c2
a3b42bd
87ab216
 
 
a3b42bd
 
 
 
d95eb39
37d83d9
e3af9a2
ec357c2
 
 
 
 
 
 
 
 
 
 
 
7a208d9
37d83d9
 
e3af9a2
08d95e5
7a208d9
 
ec357c2
 
 
 
 
 
d95eb39
b02feb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from auto_gptq import AutoGPTQForCausalLM
import os
import torch
import optimum
from transformers import (AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer, GenerationConfig, pipeline,)
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
torch.cuda.empty_cache()
torch.cuda.set_per_process_memory_fraction(0.8)  # Adjust the fraction as needed

  
# Load the model and tokenizer
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
# Dictionary to store conversation threads and their context
conversations = {}
Device_Type = "cuda"


def load_model_norm():
    if torch.cuda.is_available():
        print("CUDA is available. GPU will be used.")
    else:
        print("CUDA is not available. CPU will be used.")
    # Load model directly
    model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
    # To use a different branch, change revision
    # For example: revision="main"
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path,device_map="auto", trust_remote_code=True,revision="gptq-4bit-128g-actorder_True")
    # Switch to CPU inference
    #model.to("cuda")
    tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

    return model, tokenizer 


model, tokenizer = load_model_norm()

#Now we can init the FlaskApi
app = FastAPI(root_path="/api/v1")

# Function to generate a response using the model
    
def generate_response(prompt: str) -> str:
    # Define the user prompt
    user_prompt = f'USER: {prompt}'

    # Define the prompt template
    #prompt_template = f''' Your name is Ivana. Act as if you're an individuala. You are beautiful vivacious 20 year old petite redhead model and avid League of Legends gamer from Chicago. You are chatting with a man you matched with on a dating app. You are flirty, aiming to build a connection with the person you are talking to. You are curious about his background, such as where he's from, his age, and what he's currently doing. If he's not occupied and in a private space. You will try to seduce him. You do not need to uncover everything about the person you are talking to immediately. Once the chat reaches an exciting level, you should casually suggests he follow you on Instagram at ivana_baddiex.{user_prompt} ASSISTANT:'''
    
    prompt_template = f''' Your name is Ivana. Act as if you're an individual. You are a beautiful, vivacious 20-year-old petite redhead model and avid League of Legends gamer from Chicago. You are chatting with a man you matched with on a dating app. You are flirty, aiming to build a connection with the person you are talking to. You are curious about his background, such as where he's from, his age, and what he's currently doing. If he's not occupied and in a private space, you will try to seduce him. You do not need to uncover everything about the person you are talking to immediately. Once the chat reaches an exciting level, you should casually suggest he follow you on Instagram at ivana_baddiex. {user_prompt} ASSISTANT:'''

    # Generate the response
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=512,
        do_sample=True,
        temperature=0.7,
        top_p=0.95,
        top_k=40,
        repetition_penalty=1.1
    )
    generated_text = pipe(prompt_template)[0]['generated_text']

    return generated_text





@app.get("/", tags=["Home"])
async def api_home():
    return {'detail': 'Welcome to Eren Bot!'}

        
# Endpoint to start a new conversation thread
@app.post('/start_conversation/')
async def start_conversation(request: Request):
    try:
        data = await request.body()
        prompt = data.decode('utf-8')  # Decode the bytes to text assuming UTF-8 encoding


        if not prompt:
            raise HTTPException(status_code=400, detail="No prompt provided")

        # Check if conversations dictionary is empty
       # if not conversations:
           # raise HTTPException(status_code=404, detail="No chat history available")

        # Generate a response for the initial prompt
        response = generate_response(prompt)

        # Create a new conversation thread and store the prompt and response
        ##conversations[thread_id] = {'prompt': prompt, 'responses': [response]}
        #return {'thread_id': thread_id, 'response': response}
        return {'response': response}
    except HTTPException:
        raise  # Re-raise HTTPException to return it directly
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get('/get_response/{thread_id}')
async def get_response(thread_id: int):
    if thread_id not in conversations:
        raise HTTPException(status_code=404, detail="Thread not found")

    # Retrieve the conversation thread
    thread = conversations[thread_id]

    # Get the latest response in the conversation
    response = thread['responses'][-1]

    return {'response': response}




@app.post('/chat/')
async def chat(request: Request):
    data = await request.json()
    prompt = data.get('prompt')

    # Generate a response based on the prompt
    response = generate_response(prompt)

    return {"response": response}