File size: 5,303 Bytes
2ee547c d2c9447 2ee547c 88182e3 2ee547c 7dcbe3e 2ee547c 5b66768 5a8e6a9 5b66768 6624e83 4f9ba28 ace0225 5b66768 37d83d9 69bfe26 37d83d9 5e2b380 2ee547c c27c7f2 2ee547c 10802ab d517d58 cac49fb b02feb4 10802ab ace0225 10802ab d517d58 10802ab d517d58 2ee547c 37d83d9 c27c7f2 ec357c2 37d83d9 ec357c2 e3af9a2 ec357c2 a3b42bd c6d97b5 ec357c2 a3b42bd ec357c2 a3b42bd 87ab216 ec357c2 a3b42bd ec357c2 a3b42bd 87ab216 a3b42bd d95eb39 37d83d9 e3af9a2 ec357c2 7a208d9 37d83d9 e3af9a2 08d95e5 7a208d9 ec357c2 d95eb39 b02feb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from auto_gptq import AutoGPTQForCausalLM
import os
import torch
import optimum
from transformers import (AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer, GenerationConfig, pipeline,)
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
torch.cuda.empty_cache()
torch.cuda.set_per_process_memory_fraction(0.8) # Adjust the fraction as needed
# Load the model and tokenizer
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
# Dictionary to store conversation threads and their context
conversations = {}
Device_Type = "cuda"
def load_model_norm():
if torch.cuda.is_available():
print("CUDA is available. GPU will be used.")
else:
print("CUDA is not available. CPU will be used.")
# Load model directly
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,device_map="auto", trust_remote_code=True,revision="gptq-4bit-128g-actorder_True")
# Switch to CPU inference
#model.to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
return model, tokenizer
model, tokenizer = load_model_norm()
#Now we can init the FlaskApi
app = FastAPI(root_path="/api/v1")
# Function to generate a response using the model
def generate_response(prompt: str) -> str:
# Define the user prompt
user_prompt = f'USER: {prompt}'
# Define the prompt template
#prompt_template = f''' Your name is Ivana. Act as if you're an individuala. You are beautiful vivacious 20 year old petite redhead model and avid League of Legends gamer from Chicago. You are chatting with a man you matched with on a dating app. You are flirty, aiming to build a connection with the person you are talking to. You are curious about his background, such as where he's from, his age, and what he's currently doing. If he's not occupied and in a private space. You will try to seduce him. You do not need to uncover everything about the person you are talking to immediately. Once the chat reaches an exciting level, you should casually suggests he follow you on Instagram at ivana_baddiex.{user_prompt} ASSISTANT:'''
prompt_template = f''' Your name is Ivana. Act as if you're an individual. You are a beautiful, vivacious 20-year-old petite redhead model and avid League of Legends gamer from Chicago. You are chatting with a man you matched with on a dating app. You are flirty, aiming to build a connection with the person you are talking to. You are curious about his background, such as where he's from, his age, and what he's currently doing. If he's not occupied and in a private space, you will try to seduce him. You do not need to uncover everything about the person you are talking to immediately. Once the chat reaches an exciting level, you should casually suggest he follow you on Instagram at ivana_baddiex. {user_prompt} ASSISTANT:'''
# Generate the response
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
generated_text = pipe(prompt_template)[0]['generated_text']
return generated_text
@app.get("/", tags=["Home"])
async def api_home():
return {'detail': 'Welcome to Eren Bot!'}
# Endpoint to start a new conversation thread
@app.post('/start_conversation/')
async def start_conversation(request: Request):
try:
data = await request.body()
prompt = data.decode('utf-8') # Decode the bytes to text assuming UTF-8 encoding
if not prompt:
raise HTTPException(status_code=400, detail="No prompt provided")
# Check if conversations dictionary is empty
# if not conversations:
# raise HTTPException(status_code=404, detail="No chat history available")
# Generate a response for the initial prompt
response = generate_response(prompt)
# Create a new conversation thread and store the prompt and response
##conversations[thread_id] = {'prompt': prompt, 'responses': [response]}
#return {'thread_id': thread_id, 'response': response}
return {'response': response}
except HTTPException:
raise # Re-raise HTTPException to return it directly
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get('/get_response/{thread_id}')
async def get_response(thread_id: int):
if thread_id not in conversations:
raise HTTPException(status_code=404, detail="Thread not found")
# Retrieve the conversation thread
thread = conversations[thread_id]
# Get the latest response in the conversation
response = thread['responses'][-1]
return {'response': response}
@app.post('/chat/')
async def chat(request: Request):
data = await request.json()
prompt = data.get('prompt')
# Generate a response based on the prompt
response = generate_response(prompt)
return {"response": response}
|