Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,11 @@ import torch
|
|
5 |
import optimum
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from fastapi.responses import HTMLResponse
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Set environment variables for GPU usage and memory allocation
|
10 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
@@ -14,6 +19,7 @@ torch.cuda.set_per_process_memory_fraction(0.8) # Adjust the fraction as needed
|
|
14 |
# Initialize FastAPI application
|
15 |
app = FastAPI(root_path="/api/v1")
|
16 |
|
|
|
17 |
# Load the model and tokenizer
|
18 |
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
|
19 |
|
@@ -74,6 +80,51 @@ def hermes_model():
|
|
74 |
|
75 |
model, tokenizer = hermes_model()
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def chat_response(msg_prompt: str) -> dict:
|
78 |
"""
|
79 |
Generates a response from the model given a prompt.
|
@@ -202,6 +253,46 @@ async def hermes_chat(request: Request):
|
|
202 |
raise
|
203 |
except Exception as e:
|
204 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
@app.post('/prompted_chat')
|
207 |
async def prompted_chat(request: Request):
|
|
|
5 |
import optimum
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from fastapi.responses import HTMLResponse
|
8 |
+
from datetime import datetime
|
9 |
+
import random
|
10 |
+
import string
|
11 |
+
from datasets import Dataset
|
12 |
+
import json
|
13 |
|
14 |
# Set environment variables for GPU usage and memory allocation
|
15 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
|
|
19 |
# Initialize FastAPI application
|
20 |
app = FastAPI(root_path="/api/v1")
|
21 |
|
22 |
+
|
23 |
# Load the model and tokenizer
|
24 |
model_name_or_path = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
|
25 |
|
|
|
80 |
|
81 |
model, tokenizer = hermes_model()
|
82 |
|
83 |
+
def generate_id(length=5):
|
84 |
+
"""
|
85 |
+
Generates a random alphanumeric ID.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
length (int): The length of the ID.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
str: A random alphanumeric ID.
|
92 |
+
"""
|
93 |
+
return ''.join(random.choices(string.ascii_letters + string.digits, k=length))
|
94 |
+
|
95 |
+
def generate_thread_id():
|
96 |
+
"""
|
97 |
+
Generates a unique thread ID for each conversation.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
str: A unique thread ID.
|
101 |
+
"""
|
102 |
+
return generate_id()
|
103 |
+
|
104 |
+
def generate_message_id():
|
105 |
+
"""
|
106 |
+
Generates a random alphanumeric message ID.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
str: A random alphanumeric message ID.
|
110 |
+
"""
|
111 |
+
return generate_id()
|
112 |
+
|
113 |
+
|
114 |
+
def save_conversation(user_id, conversation):
|
115 |
+
hf_space_path="articko/conversations"
|
116 |
+
"""
|
117 |
+
Save conversation history to disk.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
user_id (str): The unique identifier for the user.
|
121 |
+
conversation (dict): The conversation data.
|
122 |
+
hf_space_path (str): The path to the Hugging Face Space.
|
123 |
+
"""
|
124 |
+
with open(f'{hf_space_path}/conversations.jsonl', 'a') as file:
|
125 |
+
json.dump({user_id: conversation}, file)
|
126 |
+
file.write('\n')
|
127 |
+
|
128 |
def chat_response(msg_prompt: str) -> dict:
|
129 |
"""
|
130 |
Generates a response from the model given a prompt.
|
|
|
253 |
raise
|
254 |
except Exception as e:
|
255 |
raise HTTPException(status_code=500, detail=str(e))
|
256 |
+
|
257 |
+
@app.post('/chat_thread/{user_id}')
|
258 |
+
async def chat_thread(request: Request, user_id: str):
|
259 |
+
"""
|
260 |
+
Starts a new conversation thread with a provided prompt for a specific user.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
request (Request): The HTTP request object containing the user prompt.
|
264 |
+
user_id (str): The unique identifier for the user.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
dict: The response generated by the model along with the user's conversation history.
|
268 |
+
"""
|
269 |
+
try:
|
270 |
+
thread_id = generate_thread_id()
|
271 |
+
|
272 |
+
data = await request.json()
|
273 |
+
msg_prompt = data.get('msg_prompt')
|
274 |
+
|
275 |
+
if not msg_prompt:
|
276 |
+
raise HTTPException(status_code=400, detail="Prompt not provided")
|
277 |
+
|
278 |
+
# Generate response
|
279 |
+
response = chat_response(msg_prompt)
|
280 |
+
|
281 |
+
# Generate message ID
|
282 |
+
message_id = generate_message_id()
|
283 |
+
|
284 |
+
# Construct conversation entry
|
285 |
+
conversation_entry = {'thread_id': thread_id, 'message_id': message_id, 'user': msg_prompt, 'assistant': response}
|
286 |
+
|
287 |
+
# Save conversation history to disk
|
288 |
+
save_conversation(user_id, conversation_entry)
|
289 |
+
|
290 |
+
# Return response and thread ID
|
291 |
+
return {'response': conversation_entry}
|
292 |
+
except HTTPException as e:
|
293 |
+
raise e
|
294 |
+
except Exception as e:
|
295 |
+
raise HTTPException(status_code=500, detail=str(e))
|
296 |
|
297 |
@app.post('/prompted_chat')
|
298 |
async def prompted_chat(request: Request):
|