import os import gradio as gr from ultralytics import YOLO import numpy as np import cv2 model_options = ["yolo-8n-dota.pt", "yolo-8s-dota.pt", "yolo-8m-dota.pt"] model_names = ["Nano", "Small", "Medium"] models = [YOLO(option) for option in model_options] example_list = [["examples/" + example] for example in os.listdir("examples")] def process_image(input_image, model_name, conf): if input_image is None: return None, "No image" if model_name is None: model_name = model_names[0] if conf is None: conf = 0.6 orig_height, orig_width, _ = input_image.shape print(input_image.shape) input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) cv2.imwrite('./res.jpg', input_image) model_index = model_names.index(model_name) model = models[model_index] results = model.predict(input_image, conf=conf) class_counts = {} class_counts_str = "Class Counts:\n" for r in results: im_array = r.plot() im_array = im_array.astype(np.uint8) im_array = cv2.cvtColor(im_array, cv2.COLOR_BGR2RGB) if len(r.obb.cls) == 0: # If no objects are detected return None, "No objects detected." for cls in r.obb.cls: class_name = r.names[cls.item()] class_counts[class_name] = class_counts.get(class_name, 0) + 1 for cls, count in class_counts.items(): class_counts_str += f"\n{cls}: {count}" return im_array, class_counts_str iface = gr.Interface( fn=process_image, inputs=[ gr.Image(), gr.Radio(model_names, label="Choose model", value=model_names[0]), gr.Slider(minimum=0.2, maximum=1.0, step=0.1, label="Confidence Threshold", value=0.6) ], outputs=["image", gr.Textbox(label="More info")], title="YOLOv8-obb aerial detection", description='''YOLOv8-obb trained on DOTAv1.5''', examples=example_list ) iface.launch()