Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import joblib | |
from api import is_beautiful | |
from facial_image import FacialImage, convert_to_numpy_array | |
title = "Sytoss System: Beauty Recognition" | |
description = "A model to classify is face beautiful or not." | |
target_width = 512 | |
facial = FacialImage() | |
loaded_svm_classifier = joblib.load('svm_model.pkl') | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
def process_image(input_image: np.ndarray): | |
if input_image is not None: | |
output_image = input_image | |
input_height, input_width, _ = input_image.shape | |
if input_width > target_width: | |
scale_factor = float(target_width / input_width) | |
output_width = int(input_width * scale_factor) | |
output_height = int(input_height * scale_factor) | |
dsize = (output_width, output_height) | |
output_image = cv2.resize(input_image, dsize) | |
ratios, output_image = facial.calculate_ratios(output_image) | |
ratios_vector = convert_to_numpy_array(ratios) | |
class_probabilities = loaded_svm_classifier.predict_proba([ratios_vector]) | |
predicted_class = np.argmax(class_probabilities) | |
probability_of_predicted_class = class_probabilities[0, predicted_class] | |
return output_image, predicted_class, probability_of_predicted_class | |
return None, None | |
iface = gr.Interface( | |
process_image, | |
inputs=gr.inputs.Image(), | |
outputs=["image", gr.Number(label="Predicted class"), gr.Number(label="Probability")], | |
title=title, | |
description=description, | |
examples=example_list) | |
iface.launch() | |