Spaces:
Sleeping
Sleeping
Vladislawoo
commited on
Commit
·
6e57eae
1
Parent(s):
2636684
Upload faiss.ipynb
Browse files- faiss.ipynb +102 -0
faiss.ipynb
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "d82abfc8-1e95-41f0-a9af-4946de3ad846",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"ДХЛ. Красная шапочка и другие сказки\n",
|
14 |
+
"Ослиная шкура\n",
|
15 |
+
"Рождественское чудо мистера Туми\n"
|
16 |
+
]
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"import pandas as pd\n",
|
21 |
+
"import torch\n",
|
22 |
+
"import numpy as np\n",
|
23 |
+
"from transformers import AutoTokenizer, AutoModel\n",
|
24 |
+
"import faiss\n",
|
25 |
+
"\n",
|
26 |
+
"# Загрузка модели и токенизатора BERT\n",
|
27 |
+
"model_name = \"cointegrated/rubert-tiny2\"\n",
|
28 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
29 |
+
"model = AutoModel.from_pretrained(model_name)\n",
|
30 |
+
"\n",
|
31 |
+
"# Загрузка данных из CSV\n",
|
32 |
+
"df = pd.read_csv('final_data.csv')\n",
|
33 |
+
"\n",
|
34 |
+
"# Максимальная длина текста\n",
|
35 |
+
"MAX_LEN = 300\n",
|
36 |
+
"\n",
|
37 |
+
"# Функция для встраивания текста с использованием BERT\n",
|
38 |
+
"def embed_bert_cls(text, model=model, tokenizer=tokenizer):\n",
|
39 |
+
" t = tokenizer(text,\n",
|
40 |
+
" padding=True,\n",
|
41 |
+
" truncation=True,\n",
|
42 |
+
" return_tensors='pt',\n",
|
43 |
+
" max_length=MAX_LEN)\n",
|
44 |
+
" with torch.no_grad():\n",
|
45 |
+
" model_output = model(**{k: v.to(model.device) for k, v in t.items()})\n",
|
46 |
+
" embeddings = model_output.last_hidden_state[:, 0, :]\n",
|
47 |
+
" embeddings = torch.nn.functional.normalize(embeddings)\n",
|
48 |
+
" return embeddings[0].cpu().squeeze()\n",
|
49 |
+
"\n",
|
50 |
+
"# Загрузка предварительно вычисленных векторов\n",
|
51 |
+
"embeddings = np.loadtxt('embeddings.txt')\n",
|
52 |
+
"embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]\n",
|
53 |
+
"\n",
|
54 |
+
"# Создание индекса Faiss\n",
|
55 |
+
"embeddings_matrix = np.stack(embeddings)\n",
|
56 |
+
"index = faiss.IndexFlatIP(embeddings_matrix.shape[1])\n",
|
57 |
+
"index.add(embeddings_matrix)\n",
|
58 |
+
"\n",
|
59 |
+
"# Текст запроса\n",
|
60 |
+
"text = 'добрую сказку с плохим концом для детей'\n",
|
61 |
+
"\n",
|
62 |
+
"# Встраивание запроса и поиск ближайших векторов с использованием Faiss\n",
|
63 |
+
"query_embedding = embed_bert_cls(text)\n",
|
64 |
+
"query_embedding = query_embedding.numpy().astype('float32')\n",
|
65 |
+
"k, indices = index.search(np.expand_dims(query_embedding, axis=0), 3)\n",
|
66 |
+
"\n",
|
67 |
+
"# Вывод результатов\n",
|
68 |
+
"for i in indices[0]:\n",
|
69 |
+
" print(df['title'][i])"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": null,
|
75 |
+
"id": "c0aa7ef2-7f93-4300-9555-047bbc6c1036",
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": []
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"metadata": {
|
82 |
+
"kernelspec": {
|
83 |
+
"display_name": "Python 3 (ipykernel)",
|
84 |
+
"language": "python",
|
85 |
+
"name": "python3"
|
86 |
+
},
|
87 |
+
"language_info": {
|
88 |
+
"codemirror_mode": {
|
89 |
+
"name": "ipython",
|
90 |
+
"version": 3
|
91 |
+
},
|
92 |
+
"file_extension": ".py",
|
93 |
+
"mimetype": "text/x-python",
|
94 |
+
"name": "python",
|
95 |
+
"nbconvert_exporter": "python",
|
96 |
+
"pygments_lexer": "ipython3",
|
97 |
+
"version": "3.11.3"
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"nbformat": 4,
|
101 |
+
"nbformat_minor": 5
|
102 |
+
}
|