File size: 3,065 Bytes
ebbf28c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d406c9d
ebbf28c
 
 
 
 
 
 
 
 
 
 
d406c9d
ebbf28c
 
 
 
 
 
 
1d7fac4
ebbf28c
 
 
1d7fac4
ebbf28c
1d7fac4
ebbf28c
 
1d7fac4
ebbf28c
 
 
 
 
 
 
 
 
 
 
 
 
 
b377cc7
 
ebbf28c
 
 
 
 
 
 
 
 
 
 
 
 
d406c9d
ebbf28c
d406c9d
 
ebbf28c
d406c9d
ebbf28c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
from sklearn.metrics import precision_recall_curve, auc


_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

_DESCRIPTION = """\
Computes the area under precision-recall curve. Implementation details taken from https://sinyi-chou.github.io/python-sklearn-precision-recall/
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    prediction_scores: Model predictions
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    pr_auc: area under the precision-recall curve,
Examples:
    No examples
"""

BAD_WORDS_URL = ""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class PRAUC(evaluate.Metric):
    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'prediction_scores': datasets.Value("float"),
                'references': datasets.Value('int32'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, prediction_scores, references):
        """Returns the scores"""
        precision, recall, thresholds = precision_recall_curve(references, prediction_scores)
        auc_precision_recall = auc(recall, precision)
        return {
            "pr_auc": auc_precision_recall,
        }