Spaces:
Running
Running
Vokturz
commited on
Commit
·
76398c6
1
Parent(s):
3fe032d
add app
Browse files- src/app.py +109 -0
src/app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from utils import extract_from_url, get_model, calculate_memory
|
4 |
+
import plotly.express as px
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
st.set_page_config(page_title='Can you run it? LLM GPU check', layout="wide", initial_sidebar_state="expanded")
|
8 |
+
|
9 |
+
st.title("Can you run it? LLM GPU check")
|
10 |
+
|
11 |
+
percentage_width_main = 80
|
12 |
+
st.markdown(
|
13 |
+
f"""<style>
|
14 |
+
.appview-container .main .block-container{{
|
15 |
+
max-width: {percentage_width_main}%;}}
|
16 |
+
</style>
|
17 |
+
""",
|
18 |
+
unsafe_allow_html=True,
|
19 |
+
)
|
20 |
+
@st.cache_resource
|
21 |
+
def get_gpu_specs():
|
22 |
+
return pd.read_csv("data/gpu_specs.csv")
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def get_name(index):
|
27 |
+
row = gpu_specs.iloc[index]
|
28 |
+
return f"{row['Product Name']} ({row['RAM (GB)']} GB, {row['Year']})"
|
29 |
+
|
30 |
+
def create_plot(memory_table, y, title, container):
|
31 |
+
fig = px.bar(memory_table, x=memory_table.index, y=y, color_continuous_scale="RdBu_r")
|
32 |
+
fig.update_layout(yaxis_title="Number of GPUs", title=dict(text=title, font=dict(size=25)))
|
33 |
+
fig.update_coloraxes(showscale=False)
|
34 |
+
|
35 |
+
container.plotly_chart(fig, use_container_width=True)
|
36 |
+
|
37 |
+
gpu_specs = get_gpu_specs()
|
38 |
+
|
39 |
+
access_token = st.sidebar.text_input("Access token")
|
40 |
+
model_name = st.sidebar.text_input("Model name", value="mistralai/Mistral-7B-v0.1")
|
41 |
+
if not model_name:
|
42 |
+
st.info("Please enter a model name")
|
43 |
+
st.stop()
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
model_name = extract_from_url(model_name)
|
48 |
+
if model_name not in st.session_state:
|
49 |
+
model = get_model(model_name, library="transformers", access_token=access_token)
|
50 |
+
st.session_state[model_name] = (model, calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"]))
|
51 |
+
|
52 |
+
|
53 |
+
gpu_vendor = st.sidebar.selectbox("GPU Vendor", ["NVIDIA", "AMD", "Intel"])
|
54 |
+
year = st.sidebar.selectbox("Filter by Release Year", list(range(2014, 2024))[::-1], index=None)
|
55 |
+
gpu_info = gpu_specs[gpu_specs['Vendor'] == gpu_vendor].sort_values('RAM (GB)', ascending=False)
|
56 |
+
if year:
|
57 |
+
gpu_info = gpu_info[gpu_info['Year'] == year]
|
58 |
+
|
59 |
+
min_ram = gpu_info['RAM (GB)'].min()
|
60 |
+
max_ram = gpu_info['RAM (GB)'].max()
|
61 |
+
ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (min_ram, max_ram), step=0.5)
|
62 |
+
gpu_info = gpu_info[gpu_info["RAM (GB)"].between(*ram)]
|
63 |
+
gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), index=21, format_func=lambda x : gpu_specs.iloc[x]['Product Name'])
|
64 |
+
|
65 |
+
gpu_spec = gpu_specs.iloc[gpu]
|
66 |
+
gpu_spec.name = 'INFO'
|
67 |
+
|
68 |
+
lora_pct = st.sidebar.slider("LoRa % trainable parameters", 0.1, 100.0, 2.0, step=0.1)
|
69 |
+
|
70 |
+
st.sidebar.dataframe(gpu_spec.T)
|
71 |
+
|
72 |
+
memory_table = pd.DataFrame(st.session_state[model_name][1]).set_index('dtype')
|
73 |
+
memory_table['LoRA Fine-Tunning (GB)'] = (memory_table["Total Size (GB)"] +
|
74 |
+
(memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2
|
75 |
+
|
76 |
+
_, col, _ = st.columns([1,3,1])
|
77 |
+
with col.expander("Information", expanded=True):
|
78 |
+
st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/)
|
79 |
+
- Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co/spaces/hf-accelerate/model-memory-usage)
|
80 |
+
using `transformers` library
|
81 |
+
- Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/),
|
82 |
+
where is estimated as """)
|
83 |
+
|
84 |
+
st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""")
|
85 |
+
st.markdown("""- For LoRa Fine-tunning, I'm asuming a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""")
|
86 |
+
st.latex(r"\text{Memory}_\text{LoRa} \approx \text{Model Size} + \left(\text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2")
|
87 |
+
st.markdown("- You can understand `int4` as models in `GPTQ-4bit`, `AWQ-4bit` or `Q4_0 GGUF/GGML` formats")
|
88 |
+
|
89 |
+
|
90 |
+
_memory_table = memory_table.copy()
|
91 |
+
memory_table = memory_table.round(2).T
|
92 |
+
_memory_table /= gpu_spec['RAM (GB)']
|
93 |
+
_memory_table = _memory_table.apply(np.ceil).astype(int).drop(columns=['Parameters (Billion)', 'Total Size (GB)'])
|
94 |
+
_memory_table.columns = ['Inference', 'Full Training Adam', 'LoRa Fine-tuning']
|
95 |
+
_memory_table = _memory_table.stack().reset_index()
|
96 |
+
_memory_table.columns = ['dtype', 'Variable', 'Number of GPUs']
|
97 |
+
|
98 |
+
col1, col2 = st.columns([1,1.3])
|
99 |
+
with col1:
|
100 |
+
st.write(f"#### [{model_name}](https://huggingface.co/{model_name}) ({memory_table.iloc[3,0]:.1f}B)")
|
101 |
+
st.write(memory_table.iloc[[0, 1, 2, 4]])
|
102 |
+
with col2:
|
103 |
+
num_colors= 4
|
104 |
+
colors = [px.colors.sequential.RdBu[int(i*(len(px.colors.sequential.RdBu)-1)/(num_colors-1))] for i in range(num_colors)]
|
105 |
+
fig = px.bar(_memory_table, x='Variable', y='Number of GPUs', color='dtype', barmode='group', color_discrete_sequence=colors)
|
106 |
+
fig.update_layout(title=dict(text=f"Number of GPUs required for<br> {get_name(gpu)}", font=dict(size=25))
|
107 |
+
, xaxis_tickfont_size=14, yaxis_tickfont_size=16, yaxis_dtick='1')
|
108 |
+
st.plotly_chart(fig, use_container_width=True)
|
109 |
+
|