File size: 8,652 Bytes
6b7f843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import torch
from matplotlib import pyplot as plt
import numpy as np
from groundingdino.util.inference import load_model, load_image, predict
from segment_anything import SamPredictor, sam_model_registry
from torchvision.ops import box_convert
model_type = "vit_b"
sam_checkpoint = "weights/sam_vit_b.pth"
config = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
dino_checkpoint = "weights/groundingdino_swint_ogc.pth"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
predictor = SamPredictor(sam)
device = "cpu"
model = load_model(config, dino_checkpoint, device)
box_threshold = 0.35
text_threshold = 0.25
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label = None):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='red', facecolor=(0,0,0,0), lw=2))
if label is not None:
ax.text(x0, y0, label, fontsize=12, color='white', backgroundcolor='red', ha='left', va='top')
def extract_object_with_transparent_background(image, masks):
mask_expanded = np.expand_dims(masks[0], axis=-1)
mask_expanded = np.repeat(mask_expanded, 3, axis=-1)
segment = image * mask_expanded
rgba_segment = np.zeros((segment.shape[0], segment.shape[1], 4), dtype=np.uint8)
rgba_segment[:, :, :3] = segment
rgba_segment[:, :, 3] = masks[0] * 255
return rgba_segment
def extract_remaining_image(image, masks):
inverse_mask = np.logical_not(masks[0])
inverse_mask_expanded = np.expand_dims(inverse_mask, axis=-1)
inverse_mask_expanded = np.repeat(inverse_mask_expanded, 3, axis=-1)
remaining_image = image * inverse_mask_expanded
return remaining_image
def overlay_masks_boxes_on_image(image, masks, boxes, labels, show_masks, show_boxes):
fig, ax = plt.subplots()
ax.imshow(image)
if show_masks:
for mask in masks:
show_mask(mask, ax, random_color=False)
if show_boxes:
for input_box, label in zip(boxes, labels):
show_box(input_box, ax, label)
ax.axis('off')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
plt.margins(0, 0)
fig.canvas.draw()
output_image = np.array(fig.canvas.buffer_rgba())
plt.close(fig)
return output_image
def detect_objects(image, prompt, show_masks, show_boxes, crop_options):
image_source, image = load_image(image)
predictor.set_image(image_source)
boxes, logits, phrases = predict(
model=model,
image=image,
caption=prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=device
)
h, w, _ = image_source.shape
boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy") * torch.Tensor([w, h, w, h])
boxes = np.round(boxes.numpy()).astype(int)
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
masks_list = []
for input_box, label in zip(boxes, labels):
x1, y1, x2, y2 = input_box
width = x2 - x1
height = y2 - y1
avg_size = (width + height) / 2
d = avg_size * 0.1
center_point = np.array([(x1 + x2) / 2, (y1 + y2) / 2])
points = []
points.append([center_point[0], center_point[1] - d])
points.append([center_point[0], center_point[1] + d])
points.append([center_point[0] - d, center_point[1]])
points.append([center_point[0] + d, center_point[1]])
input_point = np.array(points)
input_label = np.array([1] * len(input_point))
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
mask_input = logits[np.argmax(scores), :, :]
masks, _, _ = predictor.predict(
point_coords=input_point,
point_labels=input_label,
mask_input=mask_input[None, :, :],
multimask_output=False
)
masks_list.append(masks)
if crop_options == "Crop":
composite_image = np.zeros_like(image_source)
for masks in masks_list:
rgba_segment = extract_object_with_transparent_background(image_source, masks)
composite_image = np.maximum(composite_image, rgba_segment[:, :, :3])
output_image = overlay_masks_boxes_on_image(composite_image, masks_list, boxes, labels, show_masks, show_boxes)
elif crop_options == "Inverse Crop":
remaining_image = image_source.copy()
for masks in masks_list:
remaining_image = extract_remaining_image(remaining_image, masks)
output_image = overlay_masks_boxes_on_image(remaining_image, masks_list, boxes, labels, show_masks, show_boxes)
else:
output_image = overlay_masks_boxes_on_image(image_source, masks_list, boxes, labels, show_masks, show_boxes)
output_image_path = 'output_image.jpeg'
plt.imsave(output_image_path, output_image)
return output_image_path
block = gr.Blocks(css=".gradio-container {background-color: #f8f8f8; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif}")
with block:
gr.HTML("""
<style>
body {
background-color: #f5f5f5;
font-family: 'Roboto', sans-serif;
padding: 30px;
}
</style>
""")
gr.HTML("<h1 style='text-align: center;'>Segment Any Image</h1>")
gr.HTML("<h3 style='text-align: center;'>Zero-Shot Object Detection, Segmentation and Cropping</h3>")
with gr.Row():
with gr.Column(width="auto"):
input_image = gr.Image(type='filepath', label="Upload Image")
with gr.Column(width="auto"):
output_image = gr.Image(type='filepath', label="Result")
with gr.Row():
with gr.Column(width="auto"):
object_search = gr.Textbox(
label="Object to Detect",
placeholder="Enter any text, comma separated if multiple objects needed",
show_label=True,
lines=1,
)
with gr.Column(width="auto"):
show_masks = gr.Checkbox(label="Show Masks", default=True)
show_boxes = gr.Checkbox(label="Show Boxes", default=True)
with gr.Column(width="auto"):
crop_options = gr.Radio(choices=["None", "Crop", "Inverse Crop"], label="Crop Options", default="None")
with gr.Row():
submit = gr.Button(value="Send", variant="secondary").style(full_width=True)
gr.Examples(
examples=[
["images/tiger.jpeg", "animal from cat family", True, True],
["images/car.jpeg", "a blue sports car", True, False],
["images/bags.jpeg", "black bag next to the red bag", False, True],
["images/deer.jpeg", "deer jumping and running across the road", True, True],
["images/penn.jpeg", "sign board", True, False],
],
inputs=[input_image, object_search, show_masks, show_boxes],
)
gr.HTML("""
<div style="text-align:center">
<p>Developed by <a href='https://www.linkedin.com/in/dekay/'>Github and Huggingface: Volkopat</a></p>
<p>Powered by <a href='https://segment-anything.com'>Segment Anything</a> and <a href='https://arxiv.org/abs/2303.05499'>Grounding DINO</a></p>
<p>Just upload an image and enter the objects to detect, segment, crop, etc. That's all folks!</p>
<p>What's Zero-Shot? It means you can detect objects without any training samples!</p>
<p>This project is for demonstration purposes. Credits for State of the Art models go to Meta AI and IDEA Research.</p>
</div>
<style>
p {
margin-bottom: 10px;
font-size: 16px;
}
a {
color: #3867d6;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
</style>
""")
submit.click(fn=detect_objects,
inputs=[input_image, object_search, show_masks, show_boxes, crop_options],
outputs=[output_image])
block.launch(width=800) |