File size: 8,652 Bytes
6b7f843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import torch
from matplotlib import pyplot as plt
import numpy as np
from groundingdino.util.inference import load_model, load_image, predict
from segment_anything import SamPredictor, sam_model_registry
from torchvision.ops import box_convert

model_type = "vit_b"
sam_checkpoint = "weights/sam_vit_b.pth"
config = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
dino_checkpoint = "weights/groundingdino_swint_ogc.pth"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
predictor = SamPredictor(sam)
device = "cpu"
model = load_model(config, dino_checkpoint, device)
box_threshold = 0.35
text_threshold = 0.25

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_box(box, ax, label = None):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='red', facecolor=(0,0,0,0), lw=2))  
    if label is not None:
        ax.text(x0, y0, label, fontsize=12, color='white', backgroundcolor='red', ha='left', va='top')

def extract_object_with_transparent_background(image, masks):
    mask_expanded = np.expand_dims(masks[0], axis=-1)
    mask_expanded = np.repeat(mask_expanded, 3, axis=-1)
    segment = image * mask_expanded
    rgba_segment = np.zeros((segment.shape[0], segment.shape[1], 4), dtype=np.uint8)
    rgba_segment[:, :, :3] = segment
    rgba_segment[:, :, 3] = masks[0] * 255
    return rgba_segment

def extract_remaining_image(image, masks):
    inverse_mask = np.logical_not(masks[0])
    inverse_mask_expanded = np.expand_dims(inverse_mask, axis=-1)
    inverse_mask_expanded = np.repeat(inverse_mask_expanded, 3, axis=-1)
    remaining_image = image * inverse_mask_expanded
    return remaining_image

def overlay_masks_boxes_on_image(image, masks, boxes, labels, show_masks, show_boxes):
    fig, ax = plt.subplots()
    ax.imshow(image)
    if show_masks:
        for mask in masks:
            show_mask(mask, ax, random_color=False)

    if show_boxes:
        for input_box, label in zip(boxes, labels):
            show_box(input_box, ax, label)

    ax.axis('off')
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0, hspace=0)
    plt.margins(0, 0)

    fig.canvas.draw() 
    output_image = np.array(fig.canvas.buffer_rgba())
    
    plt.close(fig)
    return output_image


def detect_objects(image, prompt, show_masks, show_boxes, crop_options):
    image_source, image = load_image(image)
    predictor.set_image(image_source)
    
    boxes, logits, phrases = predict(
        model=model, 
        image=image, 
        caption=prompt, 
        box_threshold=box_threshold, 
        text_threshold=text_threshold,
        device=device
    )

    h, w, _ = image_source.shape
    boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy") * torch.Tensor([w, h, w, h])
    boxes = np.round(boxes.numpy()).astype(int)

    labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]

    masks_list = []

    for input_box, label in zip(boxes, labels):
        x1, y1, x2, y2 = input_box
        width = x2 - x1
        height = y2 - y1
        avg_size = (width + height) / 2
        d = avg_size * 0.1 
        
        center_point = np.array([(x1 + x2) / 2, (y1 + y2) / 2])
        points = []
        points.append([center_point[0], center_point[1] - d]) 
        points.append([center_point[0], center_point[1] + d])  
        points.append([center_point[0] - d, center_point[1]]) 
        points.append([center_point[0] + d, center_point[1]])  
        input_point = np.array(points)
        input_label = np.array([1] * len(input_point))

        masks, scores, logits = predictor.predict(
            point_coords=input_point,
            point_labels=input_label,
            multimask_output=True,
        )
        mask_input = logits[np.argmax(scores), :, :]

        masks, _, _ = predictor.predict(
            point_coords=input_point,
            point_labels=input_label,
            mask_input=mask_input[None, :, :],
            multimask_output=False
        )
        masks_list.append(masks)
        
    if crop_options == "Crop":
        composite_image = np.zeros_like(image_source)
        for masks in masks_list:
            rgba_segment = extract_object_with_transparent_background(image_source, masks)
            composite_image = np.maximum(composite_image, rgba_segment[:, :, :3])
        output_image = overlay_masks_boxes_on_image(composite_image, masks_list, boxes, labels, show_masks, show_boxes)
    elif crop_options == "Inverse Crop":
        remaining_image = image_source.copy()
        for masks in masks_list:
            remaining_image = extract_remaining_image(remaining_image, masks)
        output_image = overlay_masks_boxes_on_image(remaining_image, masks_list, boxes, labels, show_masks, show_boxes)
    else:
        output_image = overlay_masks_boxes_on_image(image_source, masks_list, boxes, labels, show_masks, show_boxes)
    
    output_image_path = 'output_image.jpeg'
    plt.imsave(output_image_path, output_image)
    
    return output_image_path

block = gr.Blocks(css=".gradio-container {background-color: #f8f8f8; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif}")

with block:
    gr.HTML("""
    <style>
        body {
            background-color: #f5f5f5;
            font-family: 'Roboto', sans-serif;
            padding: 30px;
        }
    </style>
    """)
    
    gr.HTML("<h1 style='text-align: center;'>Segment Any Image</h1>")
    gr.HTML("<h3 style='text-align: center;'>Zero-Shot Object Detection, Segmentation and Cropping</h3>")
    with gr.Row():
        with gr.Column(width="auto"):
            input_image = gr.Image(type='filepath', label="Upload Image")
        with gr.Column(width="auto"):
            output_image = gr.Image(type='filepath', label="Result")
    with gr.Row():
        with gr.Column(width="auto"):
            object_search = gr.Textbox(
                label="Object to Detect",
                placeholder="Enter any text, comma separated if multiple objects needed",
                show_label=True,
                lines=1,
            )
        with gr.Column(width="auto"):
            show_masks = gr.Checkbox(label="Show Masks", default=True)
            show_boxes = gr.Checkbox(label="Show Boxes", default=True)
        with gr.Column(width="auto"):
            crop_options = gr.Radio(choices=["None", "Crop", "Inverse Crop"], label="Crop Options", default="None")
    with gr.Row():
        submit = gr.Button(value="Send", variant="secondary").style(full_width=True)

    gr.Examples(
        examples=[
            ["images/tiger.jpeg", "animal from cat family", True, True],
            ["images/car.jpeg", "a blue sports car", True, False],
            ["images/bags.jpeg", "black bag next to the red bag", False, True],
            ["images/deer.jpeg", "deer jumping and running across the road", True, True],
            ["images/penn.jpeg", "sign board", True, False],
        ],
        inputs=[input_image, object_search, show_masks, show_boxes],
    )
    gr.HTML("""
            <div style="text-align:center">
                <p>Developed by <a href='https://www.linkedin.com/in/dekay/'>Github and Huggingface: Volkopat</a></p>
                <p>Powered by <a href='https://segment-anything.com'>Segment Anything</a> and <a href='https://arxiv.org/abs/2303.05499'>Grounding DINO</a></p>
                <p>Just upload an image and enter the objects to detect, segment, crop, etc.  That's all folks!</p>
                <p>What's Zero-Shot? It means you can detect objects without any training samples!</p>
                <p>This project is for demonstration purposes. Credits for State of the Art models go to Meta AI and IDEA Research.</p>
            </div>
            <style>
                p {
                    margin-bottom: 10px;
                    font-size: 16px;
                }
                a {
                    color: #3867d6;
                    text-decoration: none;
                }
                a:hover {
                    text-decoration: underline;
                }
            </style>
            """)

    submit.click(fn=detect_objects,
                inputs=[input_image, object_search, show_masks, show_boxes, crop_options],
                outputs=[output_image])

block.launch(width=800)