arXivGPT / app.py
Volkopat's picture
Update app.py
4600a74
import os
import pickle
from typing import Optional, Tuple
import gradio as gr
from threading import Lock
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import ChatVectorDBChain, ConversationalRetrievalChain
from template import QA_PROMPT, CONDENSE_QUESTION_PROMPT
from pdf2vectorstore import convert_to_vectorstore
def get_chain(api_key, vectorstore, model_name):
if model_name == "gpt-4":
llm = ChatOpenAI(model_name = model_name, temperature=0, openai_api_key=api_key)
retriever = vectorstore.as_retriever()
retriever.search_kwargs['distance_metric'] = 'cos'
retriever.search_kwargs['fetch_k'] = 100
retriever.search_kwargs['maximal_marginal_relevance'] = True
retriever.search_kwargs['k'] = 10
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever,
qa_prompt=QA_PROMPT,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
)
return qa_chain
else:
llm = OpenAI(model_name = model_name, temperature=0, openai_api_key=api_key)
qa_chain = ChatVectorDBChain.from_llm(
llm,
vectorstore,
qa_prompt=QA_PROMPT,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
)
return qa_chain
def set_openai_api_key(api_key: str, vectorstore, model_name: str):
if api_key:
chain = get_chain(api_key, vectorstore, model_name)
return chain
class ChatWrapper:
def __init__(self):
self.lock = Lock()
self.previous_url = ""
self.vectorstore_state = None
self.chain = None
def __call__(
self,
api_key: str,
arxiv_url: str,
inp: str,
history: Optional[Tuple[str, str]],
model_name: str,
):
if not arxiv_url or not api_key:
history = history or []
history.append((inp, "Please provide both arXiv URL and API key to begin"))
return history, history
if arxiv_url != self.previous_url:
history = []
vectorstore = convert_to_vectorstore(arxiv_url, api_key)
self.previous_url = arxiv_url
self.chain = set_openai_api_key(api_key, vectorstore, model_name)
self.vectorstore_state = vectorstore
if self.chain is None:
self.chain = set_openai_api_key(api_key, self.vectorstore_state, model_name)
self.lock.acquire()
try:
history = history or []
if self.chain is None:
history.append((inp, "Please paste your OpenAI key to use"))
return history, history
import openai
openai.api_key = api_key
output = self.chain ({"question": inp, "chat_history": history})["answer"]
history.append((inp, output))
except Exception as e:
raise e
finally:
api_key = ""
self.lock.release()
return history, history
chat = ChatWrapper()
block = gr.Blocks(css=".gradio-container {background-color: #f8f8f8; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif}")
with block:
gr.HTML("""
<style>
body {
background-color: #f5f5f5;
font-family: 'Roboto', sans-serif;
padding: 30px;
}
</style>
""")
gr.HTML("<h1 style='text-align: center;'>ArxivGPT</h1>")
gr.HTML("<h3 style='text-align: center;'>Ask questions about research papers</h3>")
with gr.Row():
with gr.Column(width="auto"):
openai_api_key_textbox = gr.Textbox(
label="OpenAI API Key",
placeholder="Paste your OpenAI API key (sk-...)",
show_label=True,
lines=1,
type="password",
)
with gr.Column(width="auto"):
arxiv_url_textbox = gr.Textbox(
label="Arxiv URL",
placeholder="Enter the arXiv URL",
show_label=True,
lines=1,
)
with gr.Column(width="auto"):
model_dropdown = gr.Dropdown(
label="Choose a model",
choices=["gpt-3.5-turbo", "gpt-4"],
)
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What's your question?",
placeholder="Ask questions about the paper you just linked",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
gr.Examples(
examples=[
"What's this paper about?",
"Please give me a brief summary about this paper",
"Are there any interesting correlations in the given paper?",
"How can this paper be applied in the real world?",
"What are the limitations of this paper?",
],
inputs=message,
)
gr.HTML("""
<div style="text-align:center">
<p>Developed by <a href='https://www.linkedin.com/in/dekay/'>Github and Huggingface: Volkopat</a></p>
<p>Powered by <a href='https://openai.com/'>OpenAI</a>, <a href='https://arxiv.org/'>arXiv</a> and <a href='https://github.com/hwchase17/langchain'>LangChain πŸ¦œοΈπŸ”—</a></p>
<p>ArxivGPT is a chatbot that answers questions about research papers. It uses a pretrained GPT-4 model to generate answers.</p>
<p>If you don't get a response for GPT-4, it is likely that you don't have API access, try 3.5</p>
<p>It can take upto a minute for you to start a conversation for every new paper. Please be patient.</p>
</div>
<style>
p {
margin-bottom: 10px;
font-size: 16px;
}
a {
color: #3867d6;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
</style>
""")
state = gr.State()
submit.click(chat,
inputs=[openai_api_key_textbox, arxiv_url_textbox, message, state, model_dropdown],
outputs=[chatbot, state])
message.submit(chat,
inputs=[openai_api_key_textbox, arxiv_url_textbox, message, state, model_dropdown],
outputs=[chatbot, state])
block.launch(width=800)