Vorxart commited on
Commit
6f84299
1 Parent(s): bed38a4

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+
4
+ # Streamlit app title and description
5
+ st.title("AI-Powered Inventory Management System")
6
+ st.write("""
7
+ This proof of concept demonstrates how IBM Watson and IBM Granite can be used to optimize retail inventory management.
8
+ Upload synthetic data to get AI-driven insights.
9
+ """)
10
+
11
+ # Step 1: Upload synthetic data files
12
+ st.header("Upload Your Inventory Data")
13
+ uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
14
+
15
+ if uploaded_file is not None:
16
+ # Step 2: Preview the uploaded data
17
+ data = pd.read_csv(uploaded_file)
18
+ st.subheader("Preview of the uploaded data:")
19
+ st.dataframe(data.head())
20
+
21
+ # Step 3: Call Watson and Granite APIs for AI processing (Placeholder functions)
22
+ if st.button("Generate AI Insights"):
23
+ st.subheader("AI-Powered Insights")
24
+
25
+ # Placeholder for Watson API call
26
+ demand_forecast = call_watson_api(data)
27
+ st.write("Demand Forecasting:")
28
+ st.write(demand_forecast)
29
+
30
+ # Placeholder for Granite API call
31
+ insights = call_granite_api(data)
32
+ st.write("AI-Generated Recommendations:")
33
+ st.write(insights)
34
+
35
+ # Placeholder function for Watson API integration
36
+ def call_watson_api(data):
37
+ # Simulated AI output
38
+ demand_forecast = {
39
+ "Product A": "Reorder in 5 days",
40
+ "Product B": "Stock sufficient for 10 days",
41
+ }
42
+ return demand_forecast
43
+
44
+ # Placeholder function for Granite API integration
45
+ def call_granite_api(data):
46
+ # Simulated AI output
47
+ insights = {
48
+ "Recommendation": "Run a promotion for Product C to clear overstock",
49
+ "Reorder Alert": "Product D needs restocking in 3 days",
50
+ }
51
+ return insights