Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
# Streamlit app title and description
|
5 |
+
st.title("AI-Powered Inventory Management System")
|
6 |
+
st.write("""
|
7 |
+
This proof of concept demonstrates how IBM Watson and IBM Granite can be used to optimize retail inventory management.
|
8 |
+
Upload synthetic data to get AI-driven insights.
|
9 |
+
""")
|
10 |
+
|
11 |
+
# Step 1: Upload synthetic data files
|
12 |
+
st.header("Upload Your Inventory Data")
|
13 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
14 |
+
|
15 |
+
if uploaded_file is not None:
|
16 |
+
# Step 2: Preview the uploaded data
|
17 |
+
data = pd.read_csv(uploaded_file)
|
18 |
+
st.subheader("Preview of the uploaded data:")
|
19 |
+
st.dataframe(data.head())
|
20 |
+
|
21 |
+
# Step 3: Call Watson and Granite APIs for AI processing (Placeholder functions)
|
22 |
+
if st.button("Generate AI Insights"):
|
23 |
+
st.subheader("AI-Powered Insights")
|
24 |
+
|
25 |
+
# Placeholder for Watson API call
|
26 |
+
demand_forecast = call_watson_api(data)
|
27 |
+
st.write("Demand Forecasting:")
|
28 |
+
st.write(demand_forecast)
|
29 |
+
|
30 |
+
# Placeholder for Granite API call
|
31 |
+
insights = call_granite_api(data)
|
32 |
+
st.write("AI-Generated Recommendations:")
|
33 |
+
st.write(insights)
|
34 |
+
|
35 |
+
# Placeholder function for Watson API integration
|
36 |
+
def call_watson_api(data):
|
37 |
+
# Simulated AI output
|
38 |
+
demand_forecast = {
|
39 |
+
"Product A": "Reorder in 5 days",
|
40 |
+
"Product B": "Stock sufficient for 10 days",
|
41 |
+
}
|
42 |
+
return demand_forecast
|
43 |
+
|
44 |
+
# Placeholder function for Granite API integration
|
45 |
+
def call_granite_api(data):
|
46 |
+
# Simulated AI output
|
47 |
+
insights = {
|
48 |
+
"Recommendation": "Run a promotion for Product C to clear overstock",
|
49 |
+
"Reorder Alert": "Product D needs restocking in 3 days",
|
50 |
+
}
|
51 |
+
return insights
|