Vorxart commited on
Commit
74a0261
1 Parent(s): 776205e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -23
app.py CHANGED
@@ -9,33 +9,38 @@ import os
9
  # Set up page configuration
10
  st.set_page_config(page_title="ProductProse - AI Product Description Generator", layout="wide")
11
 
12
- # Initialize session state to track API responses and user feedback
13
  if 'generated_description' not in st.session_state:
14
  st.session_state.generated_description = None
15
  if 'translated_description' not in st.session_state:
16
  st.session_state.translated_description = None
17
  if 'customized_description' not in st.session_state:
18
  st.session_state.customized_description = None
19
- if 'feedback' not in st.session_state:
20
- st.session_state.feedback = None
21
 
22
  # Sidebar for product data input
23
- st.sidebar.title("Product Data Input")
24
- product_name = st.sidebar.text_input("Product Name", "Example Product")
25
- features = st.sidebar.text_area("Product Features", "Feature 1, Feature 2, Feature 3")
26
- benefits = st.sidebar.text_area("Product Benefits", "Benefit 1, Benefit 2, Benefit 3")
27
- specifications = st.sidebar.text_area("Product Specifications", "Specification 1, Specification 2, Specification 3")
 
28
 
29
- # Select target language for translation
30
- target_language = st.sidebar.selectbox("Target Language for Translation", ["Arabic", "Chinese", "French", "German", "Japanese", "Portugese", "Russian", "Spanish", "Urdu"])
31
 
32
  # Main app title and description
33
- st.title("ProductProse - AI Product Description Generator")
34
  st.markdown("""
35
  Welcome to ProductProse, an AI-powered tool for generating and customizing product descriptions using IBM Granite LLMs.
36
  Simply input your product data and let the AI do the rest, including generating descriptions, translating them into multiple languages, and customizing them to match your brand tone and style.
37
  """)
38
 
 
 
 
 
39
  # IBM WatsonX API Setup
40
  project_id = os.getenv('WATSONX_PROJECT_ID')
41
  api_key = os.getenv('WATSONX_API_KEY')
@@ -46,15 +51,15 @@ if api_key and project_id:
46
  client.set.default_project(project_id)
47
 
48
  # Tone Selection for Description Customization
49
- tone_example = st.sidebar.selectbox("Select Example Tone (Feel free to modify)", ["Formal", "Casual", "Professional", "Playful"])
50
- st.sidebar.markdown("_Example: You can choose a tone that best fits your brand's style._")
51
 
52
  # Keyword Input for SEO Optimization
53
- seo_keywords_example = st.sidebar.text_area("SEO Keywords (comma-separated, e.g., 'smart home, automation')", "smart home, intelligent, automation")
54
- st.sidebar.markdown("_Example: Add keywords to optimize for search engines._")
55
 
56
  # Step 1: Generate Product Description
57
- st.header("Step 1: Generate Product Description")
58
  if st.button("Generate Description"):
59
  if product_name and features and benefits and specifications:
60
  # Prompt engineering for Granite-13B-Instruct
@@ -78,6 +83,7 @@ if api_key and project_id:
78
  description_response = model.generate_text(prompt=prompt)
79
  st.session_state.generated_description = description_response
80
  st.session_state.translated_description = None # Clear previous translations
 
81
  st.success("Product description generated!")
82
  st.write(description_response)
83
  except Exception as e:
@@ -86,7 +92,7 @@ if api_key and project_id:
86
  st.warning("Please fill in all the product data fields before generating a description.")
87
 
88
  # Step 2: Translate Product Description
89
- st.header("Step 2: Translate Product Description")
90
  if st.session_state.generated_description:
91
  if st.button("Translate Description"):
92
  try:
@@ -117,8 +123,8 @@ if api_key and project_id:
117
  st.write(st.session_state.translated_description)
118
 
119
  # Step 3: Customize Product Description via Chat Interface
120
- st.header("Step 3: Customize Product Description")
121
- customization_prompt = st.text_input("Customize the product description (Feel free to modify the example tone and SEO keywords)")
122
 
123
  if st.session_state.generated_description and customization_prompt:
124
  if st.button("Customize Description"):
@@ -145,15 +151,59 @@ if api_key and project_id:
145
  st.subheader("Customized Product Description")
146
  st.write(st.session_state.customized_description)
147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148
  # Step 4: Feedback and Quality Scoring
149
- st.header("Step 4: Provide Feedback")
150
- feedback = st.slider("Rate the quality of the generated product description (1 = Poor, 5 = Excellent)", 1, 5, 3)
151
  feedback_comments = st.text_area("Additional Comments")
152
 
153
  if st.button("Submit Feedback"):
154
- st.session_state.feedback = {"rating": feedback, "comments": feedback_comments}
 
 
 
 
 
 
 
 
155
  st.success("Thank you for your feedback!")
156
- st.write(st.session_state.feedback)
 
 
 
 
 
 
 
 
 
 
157
 
158
  else:
159
  st.error("IBM WatsonX API credentials are not set. Please check your environment variables.")
 
9
  # Set up page configuration
10
  st.set_page_config(page_title="ProductProse - AI Product Description Generator", layout="wide")
11
 
12
+ # Initialize session state to track API responses, user feedback, and history
13
  if 'generated_description' not in st.session_state:
14
  st.session_state.generated_description = None
15
  if 'translated_description' not in st.session_state:
16
  st.session_state.translated_description = None
17
  if 'customized_description' not in st.session_state:
18
  st.session_state.customized_description = None
19
+ if 'feedback_history' not in st.session_state:
20
+ st.session_state.feedback_history = []
21
 
22
  # Sidebar for product data input
23
+ with st.sidebar:
24
+ st.title("Product Data Input")
25
+ product_name = st.text_input("Product Name", placeholder="e.g., Smart Home Hub")
26
+ features = st.text_area("Product Features", placeholder="e.g., Voice Control, Energy Efficient, Compact Design")
27
+ benefits = st.text_area("Product Benefits", placeholder="e.g., Saves time, Reduces energy usage, Easy to install")
28
+ specifications = st.text_area("Product Specifications", placeholder="e.g., Dimensions: 10x5x3 inches, Weight: 1.5 lbs")
29
 
30
+ # Select target language for translation
31
+ target_language = st.selectbox("Target Language for Translation", ["French", "Spanish", "German", "Chinese", "Japanese"])
32
 
33
  # Main app title and description
34
+ st.markdown("# ProductProse - AI Product Description Generator")
35
  st.markdown("""
36
  Welcome to ProductProse, an AI-powered tool for generating and customizing product descriptions using IBM Granite LLMs.
37
  Simply input your product data and let the AI do the rest, including generating descriptions, translating them into multiple languages, and customizing them to match your brand tone and style.
38
  """)
39
 
40
+ # UI Enhancement: Color-coded sections for clarity
41
+ def section_header(title, color):
42
+ st.markdown(f'<h2 style="color:{color};">{title}</h2>', unsafe_allow_html=True)
43
+
44
  # IBM WatsonX API Setup
45
  project_id = os.getenv('WATSONX_PROJECT_ID')
46
  api_key = os.getenv('WATSONX_API_KEY')
 
51
  client.set.default_project(project_id)
52
 
53
  # Tone Selection for Description Customization
54
+ tone_example = st.sidebar.selectbox("Tone Example (Modify as needed)", ["Formal", "Casual", "Professional", "Playful"])
55
+ st.sidebar.markdown("_Example: Choose a tone to match your brand's style._")
56
 
57
  # Keyword Input for SEO Optimization
58
+ seo_keywords_example = st.sidebar.text_area("SEO Keywords (comma-separated)", placeholder="e.g., wireless, fast charging, Bluetooth")
59
+ st.sidebar.markdown("_Example: Add keywords that enhance search engine optimization._")
60
 
61
  # Step 1: Generate Product Description
62
+ section_header("Step 1: Generate Product Description", "blue")
63
  if st.button("Generate Description"):
64
  if product_name and features and benefits and specifications:
65
  # Prompt engineering for Granite-13B-Instruct
 
83
  description_response = model.generate_text(prompt=prompt)
84
  st.session_state.generated_description = description_response
85
  st.session_state.translated_description = None # Clear previous translations
86
+ st.session_state.customized_description = None # Clear previous customizations
87
  st.success("Product description generated!")
88
  st.write(description_response)
89
  except Exception as e:
 
92
  st.warning("Please fill in all the product data fields before generating a description.")
93
 
94
  # Step 2: Translate Product Description
95
+ section_header("Step 2: Translate Product Description", "green")
96
  if st.session_state.generated_description:
97
  if st.button("Translate Description"):
98
  try:
 
123
  st.write(st.session_state.translated_description)
124
 
125
  # Step 3: Customize Product Description via Chat Interface
126
+ section_header("Step 3: Customize Product Description", "orange")
127
+ customization_prompt = st.text_input("Customize the product description", placeholder="e.g., Make the tone more playful and mention our eco-friendly packaging")
128
 
129
  if st.session_state.generated_description and customization_prompt:
130
  if st.button("Customize Description"):
 
151
  st.subheader("Customized Product Description")
152
  st.write(st.session_state.customized_description)
153
 
154
+ # Option to translate the customized description if it hasn't been translated yet
155
+ if st.session_state.translated_description:
156
+ if st.button("Translate Customized Description"):
157
+ try:
158
+ # Translate the customized description using Granite-20B-Multilingual
159
+ prompt = f"Translate the following customized product description into {target_language}:\n{st.session_state.customized_description}"
160
+ model = ModelInference(model_id=ModelTypes.GRANITE_20B_MULTILINGUAL, params={
161
+ GenParams.DECODING_METHOD: DecodingMethods.GREEDY,
162
+ GenParams.MIN_NEW_TOKENS: 50,
163
+ GenParams.MAX_NEW_TOKENS: 200,
164
+ GenParams.STOP_SEQUENCES: ["\n"]
165
+ }, credentials=credentials, project_id=project_id)
166
+
167
+ with st.spinner(f"Translating customized product description to {target_language}..."):
168
+ customized_translation_response = model.generate_text(prompt=prompt)
169
+ st.session_state.translated_customized_description = customized_translation_response
170
+ st.success(f"Customized product description translated to {target_language}!")
171
+ st.write(customized_translation_response)
172
+ except Exception as e:
173
+ st.error(f"An error occurred while translating the customized description: {e}")
174
+
175
+ # Display the translated customized description if available
176
+ if 'translated_customized_description' in st.session_state:
177
+ st.subheader(f"Translated Customized Product Description ({target_language})")
178
+ st.write(st.session_state.translated_customized_description)
179
+
180
  # Step 4: Feedback and Quality Scoring
181
+ section_header("Step 4: Provide Feedback", "purple")
182
+ feedback_rating = st.slider("Rate the quality of the generated product description (1 = Poor, 5 = Excellent)", 1, 5, 3)
183
  feedback_comments = st.text_area("Additional Comments")
184
 
185
  if st.button("Submit Feedback"):
186
+ # Save the feedback in session state
187
+ feedback_entry = {
188
+ "rating": feedback_rating,
189
+ "comments": feedback_comments,
190
+ "description": st.session_state.generated_description,
191
+ "customized_description": st.session_state.customized_description if st.session_state.customized_description else "N/A",
192
+ "translated_description": st.session_state.translated_description if st.session_state.translated_description else "N/A"
193
+ }
194
+ st.session_state.feedback_history.append(feedback_entry)
195
  st.success("Thank you for your feedback!")
196
+
197
+ # Display the feedback summary
198
+ st.subheader("Feedback Summary")
199
+ for i, feedback in enumerate(st.session_state.feedback_history, 1):
200
+ st.write(f"**Feedback {i}:**")
201
+ st.write(f"Rating: {feedback['rating']}")
202
+ st.write(f"Comments: {feedback['comments']}")
203
+ st.write(f"Generated Description: {feedback['description']}")
204
+ st.write(f"Customized Description: {feedback['customized_description']}")
205
+ st.write(f"Translated Description: {feedback['translated_description']}")
206
+ st.markdown("---")
207
 
208
  else:
209
  st.error("IBM WatsonX API credentials are not set. Please check your environment variables.")