import streamlit as st from PIL import Image import datetime import time from ibm_watsonx_ai import APIClient from ibm_watsonx_ai import Credentials import os from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams from ibm_watsonx_ai.foundation_models.utils.enums import DecodingMethods import requests import json st.title("August 2024 IBM Hackathon") st.header("Sinple app to find synonyms") st.sidebar.header("About") st.sidebar.text("Developed by Tony Pearson") project_id = os.environ['AUG24_PROJID'] credentials = Credentials( url = "https://us-south.ml.cloud.ibm.com", api_key = os.environ['AUG24_APIKEY'] ) client = APIClient(credentials) client.set.default_project(project_id) parameters = { GenParams.DECODING_METHOD: DecodingMethods.GREEDY, GenParams.MIN_NEW_TOKENS: 1, GenParams.MAX_NEW_TOKENS: 50, GenParams.STOP_SEQUENCES: ["\n"] } model_id = ModelTypes.GRANITE_13B_CHAT_V2 model = ModelInference( model_id=model_id, params=parameters, credentials=credentials, project_id = project_id ) input_word = st.text_input("Enter your input word", "") prompt_txt = """Generate a list of words similar to the input word." Input: wordy Output: verbose, loquacious, talkative Input: """ prompt_input = prompt_txt + input_word + "\nOutput:" st.code(prompt_input) gen_parms_override = None # GENERATE if st.button("Generate list of synonyms"): generated_text_response = model.generate_text(prompt=prompt_input, params=parameters) st.write("Output from generate_text() method:") st.success(generated_text_response)