File size: 12,279 Bytes
ac36d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea15bc
c72b8ff
 
ac36d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530a351
ac36d2b
 
10ea276
 
ac36d2b
 
 
 
 
 
 
 
 
 
 
 
 
4ea15bc
 
 
530a351
ac36d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e2cb3
ac36d2b
5e056d6
 
cecfd31
ac36d2b
2f88585
 
cecfd31
2f88585
cecfd31
 
 
2f88585
 
cecfd31
2f88585
 
cecfd31
 
2f88585
 
 
 
 
cecfd31
 
2f88585
ac36d2b
 
4ea15bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import streamlit as st
import torch.nn.functional as F
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
import re
import plotly.graph_objects as go

# Assuming TransformerEncoder and TransformerDecoder are defined above
EMBEDDING_DIM = 16
HIDDEN_DIM = 16
LATENT_DIM = 16 # Dimension of the latent space
SEQ_LEN = 16 # Max length of the sequence
NHEAD = 4 # Number of heads in multi-head attention
NUM_LAYERS = 2 # Number of transformer layers

# Gumbel softmax temperature
TAU = 1.0
LEARNING_RATE = 1e-3

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Pass embeded into decoder instead of using the original x
class TransformerEncoder(nn.Module):
    def __init__(self, d_model=EMBEDDING_DIM, nhead=NHEAD, num_layers=NUM_LAYERS):
        super(TransformerEncoder, self).__init__()
        self.embedding = nn.Embedding(VOCAB_SIZE, d_model)
        self.transformer_encoder = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(d_model, nhead), num_layers
        )
        self.fc_logits = nn.Linear(d_model, LATENT_DIM)

    def forward(self, x):
        embedded = self.embedding(x).permute(1, 0, 2)  # Transformer expects seq_len, batch, features
        transformed = self.transformer_encoder(embedded)
        # Use the final state to predict logits for latent space
        logits = self.fc_logits(transformed[-1])
        return logits, embedded


class TransformerDecoder(nn.Module):
    def __init__(self, d_model=EMBEDDING_DIM, nhead=NHEAD, num_layers=NUM_LAYERS):
        super(TransformerDecoder, self).__init__()
        self.embedding = nn.Embedding(VOCAB_SIZE, d_model)
        self.transformer_decoder = nn.TransformerDecoder(
            nn.TransformerDecoderLayer(d_model, nhead), num_layers
        )
        self.fc_out = nn.Linear(d_model, VOCAB_SIZE)
        self.fc_z = nn.Linear(LATENT_DIM, d_model)  # Convert z to feature size for transformer

    def forward(self, embedded, z):
        # embedded = self.embedding(x).permute(1, 0, 2) # Transformer expects [seq_len, batch, features], permute函数用于改变张量的维度顺序
        z_adjusted = self.fc_z(z).unsqueeze(0)
        output = self.transformer_decoder(embedded, z_adjusted)
        return self.fc_out(output.permute(1, 0, 2))


class TransformerCVAE(nn.Module):
    def __init__(self):
        super(TransformerCVAE, self).__init__()
        self.encoder = TransformerEncoder()
        self.decoder = TransformerDecoder()

    def reparameterize(self, logits):
        return F.gumbel_softmax(logits, tau=TAU, hard=False, dim=-1)

    def forward(self, x):
        logits, emb = self.encoder(x)
        z = self.reparameterize(logits)
        return self.decoder(emb, z), logits
    
def load_and_preprocess_wikitext(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        text = f.read()

    # Use regular expressions to split the text into sentences
    sentences = re.split(r'(?<=[.!?])\s+', text)
    sentences = [sentence.strip() for sentence in sentences]
    
    return sentences

train_file_path = "wikitext-2/wiki.train.tokens"
test_file_path = "wikitext-2/wiki.test.tokens"
val_file_path = "wikitext-2/wiki.valid.tokens"

wikitext_sentences_train = load_and_preprocess_wikitext(train_file_path)
wikitext_sentences_test = load_and_preprocess_wikitext(test_file_path)
wikitext_sentences_val = load_and_preprocess_wikitext(val_file_path)

# Hyperparameters
BATCH_SIZE = 32
PAD_TOKEN = "<PAD>"
UNK_TOKEN = "<UNK>"

# Tokenize the data
tokens = [word for sentence in wikitext_sentences_train for word in sentence.split()]

# Build vocabulary
vocab = [PAD_TOKEN, UNK_TOKEN] + list(set(tokens))
word_index = {word: index for index, word in enumerate(vocab)}
# 添加新的tokens
SOS_TOKEN = '<SOS>'
EOS_TOKEN = '<EOS>'
word_index[SOS_TOKEN] = len(word_index)
word_index[EOS_TOKEN] = len(word_index)
vocab = {v: k for k, v in word_index.items()}
# Convert tokens to integers
def tokenize_and_encode(text):
    return [word_index.get(word, word_index[UNK_TOKEN]) for word in text.split()]

encoded_data_train = [tokenize_and_encode(sentence) for sentence in wikitext_sentences_train]

# Create a PyTorch Dataset
class WikiDataset(Dataset):
    def __init__(self, data, sequence_length):
        self.data = data
        self.sequence_length = sequence_length

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        sample = self.data[idx]
        if len(sample) < self.sequence_length:
            sample.extend([word_index[PAD_TOKEN]] * (self.sequence_length - len(sample)))
        else:
            sample = sample[:self.sequence_length]
        return torch.tensor(sample)

# dataset = WikiDataset(encoded_data_train, SEQUENCE_LENGTH)
# dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
# Split the data into train and validation sets
dataset = WikiDataset(encoded_data_train, SEQ_LEN)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True)

VOCAB_SIZE = len(vocab)

class MultiMultiSignalingGame:
    def __init__(self, senders: list, receivers: list, optimizer, criterion):
        self.senders = senders
        self.receivers = receivers
        self.optimizer = optimizer
        self.criterion = criterion

    def play_round(self, states):
        all_decoded_outputs = []
        all_logits = []
        interactions = []

        for i, sender in enumerate(self.senders):
            # Sender encodes the state
            logits, emb = sender(states[i])
            all_logits.append(logits)
            z = F.gumbel_softmax(logits, tau=TAU, hard=False, dim=-1)
            
            _, input_sentence_ids = torch.max(states[i], dim=1)
            input_sentence_ids = input_sentence_ids.cpu().numpy()
            input_sentence = ' '.join([vocab[idx] for idx in input_sentence_ids])
            
            # Each receiver decodes the signal from the sender
            for j, receiver in enumerate(self.receivers):
                decoded_output = receiver(emb, z)
                all_decoded_outputs.append(decoded_output)

                _, output_sentence_ids = torch.max(decoded_output[0], dim=1)
                output_sentence_ids = output_sentence_ids.cpu().numpy()
                output_sentence = ' '.join([vocab[idx] for idx in output_sentence_ids])
                
                interactions.append((i, j, input_sentence, output_sentence))
      
        # Calculate loss
        loss, recon_loss, kld_loss = self.compute_loss(states, all_decoded_outputs, all_logits, beta=1.0)
        
        # Update model parameters
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return loss.item(), recon_loss.item(), kld_loss.item(), interactions

    def compute_loss(self, original_states, decoded_states, logits, beta):
        recon_loss = sum([self.criterion(decoded_state.view(-1, VOCAB_SIZE), original_state.view(-1))
                          for original_state, decoded_state in zip(original_states * len(self.receivers), decoded_states)])
        
        # Calculate KLD loss
        kld_losses = []
        for logit in logits:
            mean, logvar = torch.chunk(logit, 2, dim=-1)
            kld_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
            kld_losses.append(kld_loss)

        return recon_loss + beta * sum(kld_losses), recon_loss, sum(kld_losses)
    

def run_signal_game(NUM_SENDERS, NUM_RECEIVERS, num_rounds):
    # para_checker = st.empty()
    # para_checker.text(f"NUM_SENDERS: {NUM_SENDERS}, NUM_RECEIVERS: {NUM_RECEIVERS}, num_rounds: {num_rounds}, EMBEDDING_DIM: {EMBEDDING_DIM}, HIDDEN_DIM: {HIDDEN_DIM}, LATENT_DIM: {LATENT_DIM}, SEQ_LEN: {SEQ_LEN}, TAU: {TAU}, nhead: {NHEAD}, num_layers: {NUM_LAYERS}, BATCH_SIZE: {BATCH_SIZE}")
    senders = [TransformerEncoder().to(device) for _ in range(NUM_SENDERS)]
    receivers = [TransformerDecoder().to(device) for _ in range(NUM_RECEIVERS)]

    params = [list(sender.parameters()) for sender in senders]
    params.extend([list(receiver.parameters()) for receiver in receivers])
    # optimizer = torch.optim.Adam([param for sublist in params for param in sublist], lr=0.001)
    if OPTMIZER == "Adam":
        optimizer = torch.optim.Adam([param for sublist in params for param in sublist], lr=LEARNING_RATE)
    elif OPTMIZER == "AdamW":
        optimizer = torch.optim.AdamW([param for sublist in params for param in sublist], lr=LEARNING_RATE)
    elif OPTMIZER == "SGD":
        optimizer = torch.optim.SGD([param for sublist in params for param in sublist], lr=LEARNING_RATE)
    
    criterion = torch.nn.CrossEntropyLoss()

    game = MultiMultiSignalingGame(senders, receivers, optimizer, criterion)

    losses = []
    recon_losses = []
    kld_losses = []
    input_sentences = []
    output_sentences = []

    # Use Streamlit's progress bar
    loss_plot_placeholder = st.empty()  # 创建一个空位占位符来显示损失图
    progress_bar = st.progress(0)
    interactions_placeholder = st.empty()  # 创建一个空位占位符来显示交互

    for round in range(num_rounds):
        states = [torch.randint(VOCAB_SIZE, (BATCH_SIZE, 16)).to(device) for _ in range(NUM_SENDERS)]
        loss, recon_loss, kld_loss, interactions = game.play_round(states)
        losses.append(loss)
        recon_losses.append(recon_loss)
        kld_losses.append(kld_loss)
        # 刷新显示每轮的损失
        fig, ax = plt.subplots()
        ax.plot(losses, label='Total Losses', color='blue')
        ax.plot(recon_losses, label='Reconstruction Losses', color='green')
        ax.plot(kld_losses, label='KLD Losses', color='red')
        ax.set_xlabel('Round')
        ax.set_ylabel('Loss')
        ax.legend()
        loss_plot_placeholder.pyplot(fig)
        # Close the figure to free up memory
        plt.close(fig)
        
        progress_bar.progress(round / num_rounds)
        # 刷新显示每次交互的句子
        interaction_str = "\n\n".join([f"Sender {i} -> Receiver {j}\nSend(encode): {input_sentence}\nReceive(decode): {output_sentence}" 
                                       for i, j, input_sentence, output_sentence in interactions])
        interactions_placeholder.text(interaction_str)

    # Dynamic plotting of the losses
    fig, ax = plt.subplots()
    ax.plot(losses, label='Total Losses', color='blue')
    ax.plot(recon_losses, label='Reconstruction Losses', color='green')
    ax.plot(kld_losses, label='KLD Losses', color='red')
    ax.set_xlabel('Round')
    ax.set_ylabel('Loss')
    ax.legend()
    st.pyplot(fig)

# Streamlit UI
st.title('Multi-Agent Signal Game')

NUM_SENDERS = st.sidebar.slider("NUM_SENDERS", 1, 3, 2)
NUM_RECEIVERS = st.sidebar.slider("NUM_RECEIVERS", 1, 3, 2)
num_rounds = st.sidebar.slider("NUM_ROUNDS", 1000, 100000, 10000, 1000)

advanced_settings = st.sidebar.expander("Advanced settings")
with advanced_settings:
    use_cosine_annealing = st.checkbox("USE ANNEALING")
    if use_cosine_annealing:
        annealing_strategy = st.selectbox("ANNEALING STRATEGY", ["linear", "cosine"])
        TAU = st.slider("START TEMP.", 0.1, 10.0, 1.0)
        final_tau = st.slider("FINAL TEMP.", 0.1, 10.0, 1.0)
    else:
        annealing_strategy = None
        TAU = st.slider("TEMP.", 0.1, 10.0, 1.0)

    optimizer_options = ["Adam", "AdamW", "SGD"]
    OPTMIZER = st.selectbox("OPTIMIZER", optimizer_options)
    LEARNING_RATE = st.slider("LEARNING RATE", 1e-5, 1e-2, 1e-3, format="%.5f")

    EMBEDDING_DIM = st.slider("EMBEDDING_DIM", 1, 128, 16)
    HIDDEN_DIM = st.slider("HIDDEN_DIM", 1, 128, 16)
    LATENT_DIM = st.slider("LATENT_DIM", 1, 128, 16)
    SEQ_LEN = st.slider("SEQ_LEN", 1, 128, 16)
    NHEAD = st.slider("NHEAD", 1, 8, 4)
    NUM_LAYERS = st.slider("NUM_LAYERS", 1, 6, 2)
    BATCH_SIZE = st.slider("BATCH_SIZE", 1, 128, 32)

if st.sidebar.button('Start'):
    run_signal_game(NUM_SENDERS, NUM_RECEIVERS, num_rounds)