import streamlit as st import torch.nn.functional as F import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader import re import plotly.graph_objects as go # Assuming TransformerEncoder and TransformerDecoder are defined above EMBEDDING_DIM = 16 HIDDEN_DIM = 16 LATENT_DIM = 16 # Dimension of the latent space SEQ_LEN = 16 # Max length of the sequence NHEAD = 4 # Number of heads in multi-head attention NUM_LAYERS = 2 # Number of transformer layers # Gumbel softmax temperature TAU = 1.0 LEARNING_RATE = 1e-3 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.random.manual_seed(1024) # Pass embeded into decoder instead of using the original x class TransformerEncoder(nn.Module): def __init__(self, d_model=EMBEDDING_DIM, nhead=NHEAD, num_layers=NUM_LAYERS): super(TransformerEncoder, self).__init__() self.embedding = nn.Embedding(VOCAB_SIZE, d_model) self.transformer_encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model, nhead), num_layers ) self.fc_logits = nn.Linear(d_model, LATENT_DIM) def forward(self, x): embedded = self.embedding(x).permute(1, 0, 2) # Transformer expects seq_len, batch, features transformed = self.transformer_encoder(embedded) # Use the final state to predict logits for latent space logits = self.fc_logits(transformed[-1]) return logits, embedded class TransformerDecoder(nn.Module): def __init__(self, d_model=EMBEDDING_DIM, nhead=NHEAD, num_layers=NUM_LAYERS): super(TransformerDecoder, self).__init__() self.embedding = nn.Embedding(VOCAB_SIZE, d_model) self.transformer_decoder = nn.TransformerDecoder( nn.TransformerDecoderLayer(d_model, nhead), num_layers ) self.fc_out = nn.Linear(d_model, VOCAB_SIZE) self.fc_z = nn.Linear(LATENT_DIM, d_model) # Convert z to feature size for transformer def forward(self, embedded, z): # embedded = self.embedding(x).permute(1, 0, 2) # Transformer expects [seq_len, batch, features], permute函数用于改变张量的维度顺序 z_adjusted = self.fc_z(z).unsqueeze(0) output = self.transformer_decoder(embedded, z_adjusted) return self.fc_out(output.permute(1, 0, 2)) class TransformerCVAE(nn.Module): def __init__(self): super(TransformerCVAE, self).__init__() self.encoder = TransformerEncoder() self.decoder = TransformerDecoder() def reparameterize(self, logits): return F.gumbel_softmax(logits, tau=TAU, hard=False, dim=-1) def forward(self, x): logits, emb = self.encoder(x) z = self.reparameterize(logits) return self.decoder(emb, z), logits def load_and_preprocess_wikitext(file_path): with open(file_path, 'r', encoding='utf-8') as f: text = f.read() # Use regular expressions to split the text into sentences sentences = re.split(r'(?<=[.!?])\s+', text) sentences = [sentence.strip() for sentence in sentences] return sentences train_file_path = "wikitext-2/wiki.train.tokens" test_file_path = "wikitext-2/wiki.test.tokens" val_file_path = "wikitext-2/wiki.valid.tokens" wikitext_sentences_train = load_and_preprocess_wikitext(train_file_path) wikitext_sentences_test = load_and_preprocess_wikitext(test_file_path) wikitext_sentences_val = load_and_preprocess_wikitext(val_file_path) # Hyperparameters BATCH_SIZE = 32 PAD_TOKEN = "" UNK_TOKEN = "" # Tokenize the data tokens = [word for sentence in wikitext_sentences_train for word in sentence.split()] # Build vocabulary vocab = [PAD_TOKEN, UNK_TOKEN] + list(set(tokens)) word_index = {word: index for index, word in enumerate(vocab)} # 添加新的tokens SOS_TOKEN = '' EOS_TOKEN = '' word_index[SOS_TOKEN] = len(word_index) word_index[EOS_TOKEN] = len(word_index) vocab = {v: k for k, v in word_index.items()} # Convert tokens to integers def tokenize_and_encode(text): return [word_index.get(word, word_index[UNK_TOKEN]) for word in text.split()] encoded_data_train = [tokenize_and_encode(sentence) for sentence in wikitext_sentences_train] # Create a PyTorch Dataset class WikiDataset(Dataset): def __init__(self, data, sequence_length): self.data = data self.sequence_length = sequence_length def __len__(self): return len(self.data) def __getitem__(self, idx): sample = self.data[idx] if len(sample) < self.sequence_length: sample.extend([word_index[PAD_TOKEN]] * (self.sequence_length - len(sample))) else: sample = sample[:self.sequence_length] return torch.tensor(sample) # dataset = WikiDataset(encoded_data_train, SEQUENCE_LENGTH) # dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True) # Split the data into train and validation sets dataset = WikiDataset(encoded_data_train, SEQ_LEN) train_size = int(0.8 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size]) train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True) VOCAB_SIZE = len(vocab) class MultiMultiSignalingGame: def __init__(self, senders: list, receivers: list, optimizer, criterion): self.senders = senders self.receivers = receivers self.optimizer = optimizer self.criterion = criterion def play_round(self, states): all_decoded_outputs = [] all_logits = [] interactions = [] for i, sender in enumerate(self.senders): # Sender encodes the state logits, emb = sender(states[i]) all_logits.append(logits) z = F.gumbel_softmax(logits, tau=TAU, hard=False, dim=-1) _, input_sentence_ids = torch.max(states[i], dim=1) input_sentence_ids = input_sentence_ids.cpu().numpy() input_sentence = ' '.join([vocab[idx] for idx in input_sentence_ids]) # Each receiver decodes the signal from the sender for j, receiver in enumerate(self.receivers): decoded_output = receiver(emb, z) all_decoded_outputs.append(decoded_output) _, output_sentence_ids = torch.max(decoded_output[0], dim=1) output_sentence_ids = output_sentence_ids.cpu().numpy() output_sentence = ' '.join([vocab[idx] for idx in output_sentence_ids]) interactions.append((i, j, input_sentence, output_sentence)) # Calculate loss loss, recon_loss, kld_loss = self.compute_loss(states, all_decoded_outputs, all_logits, beta=1.0) # Update model parameters self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item(), recon_loss.item(), kld_loss.item(), interactions def compute_loss(self, original_states, decoded_states, logits, beta): recon_loss = sum([self.criterion(decoded_state.view(-1, VOCAB_SIZE), original_state.view(-1)) for original_state, decoded_state in zip(original_states * len(self.receivers), decoded_states)]) # Calculate KLD loss kld_losses = [] for logit in logits: mean, logvar = torch.chunk(logit, 2, dim=-1) kld_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp()) kld_losses.append(kld_loss) return recon_loss + beta * sum(kld_losses), recon_loss, sum(kld_losses) def train_signal_game(NUM_SENDERS, NUM_RECEIVERS, num_rounds): para_checker = st.empty() para_checker.text(f"NUM_SENDERS: {NUM_SENDERS}, NUM_RECEIVERS: {NUM_RECEIVERS}, num_rounds: {num_rounds}, EMBEDDING_DIM: {EMBEDDING_DIM}, HIDDEN_DIM: {HIDDEN_DIM}, LATENT_DIM: {LATENT_DIM}, SEQ_LEN: {SEQ_LEN}, TAU: {TAU}, nhead: {NHEAD}, num_layers: {NUM_LAYERS}, BATCH_SIZE: {BATCH_SIZE}") senders = [TransformerEncoder().to(device) for _ in range(NUM_SENDERS)] receivers = [TransformerDecoder().to(device) for _ in range(NUM_RECEIVERS)] params = [list(sender.parameters()) for sender in senders] params.extend([list(receiver.parameters()) for receiver in receivers]) # optimizer = torch.optim.Adam([param for sublist in params for param in sublist], lr=0.001) if OPTMIZER == "Adam": optimizer = torch.optim.Adam([param for sublist in params for param in sublist], lr=LEARNING_RATE) elif OPTMIZER == "AdamW": optimizer = torch.optim.AdamW([param for sublist in params for param in sublist], lr=LEARNING_RATE) elif OPTMIZER == "SGD": optimizer = torch.optim.SGD([param for sublist in params for param in sublist], lr=LEARNING_RATE) criterion = torch.nn.CrossEntropyLoss() game = MultiMultiSignalingGame(senders, receivers, optimizer, criterion) losses = [] recon_losses = [] kld_losses = [] input_sentences = [] output_sentences = [] # Use Streamlit's progress bar progress_bar = st.progress(0) loss_plot_placeholder = st.empty() # 创建一个空位占位符来显示损失图 interactions_placeholder = st.empty() # 创建一个空位占位符来显示交互 for round in range(num_rounds): states = [torch.randint(VOCAB_SIZE, (BATCH_SIZE, 16)).to(device) for _ in range(NUM_SENDERS)] loss, recon_loss, kld_loss, interactions = game.play_round(states) losses.append(loss) recon_losses.append(recon_loss) kld_losses.append(kld_loss) # 刷新显示每轮的损失 fig, ax = plt.subplots() ax.plot(losses, label='Total Losses', color='blue') ax.plot(recon_losses, label='Reconstruction Losses', color='green') ax.plot(kld_losses, label='KLD Losses', color='red') ax.set_xlabel('Round') ax.set_ylabel('Loss') ax.legend() loss_plot_placeholder.pyplot(fig) # 刷新显示每次交互的句子 interaction_str = "\n\n".join([f"Sender {i} -> Receiver {j}\nSend(encode): {input_sentence}\nReceive(decode): {output_sentence}" for i, j, input_sentence, output_sentence in interactions]) interactions_placeholder.text(interaction_str) progress_bar.progress(round / num_rounds) # Dynamic plotting of the losses fig, ax = plt.subplots() ax.plot(losses, label='Total Losses', color='blue') ax.plot(recon_losses, label='Reconstruction Losses', color='green') ax.plot(kld_losses, label='KLD Losses', color='red') ax.set_xlabel('Round') ax.set_ylabel('Loss') ax.legend() st.pyplot(fig) # Streamlit UI st.title('Multi-Agents Signaling Game') NUM_SENDERS = st.sidebar.slider("NUM_SENDERS", 1, 10, 2) NUM_RECEIVERS = st.sidebar.slider("NUM_RECEIVERS", 1, 10, 2) num_rounds = st.sidebar.slider("num_rounds", 1000, 100000, 10000, 1000) use_cosine_annealing = st.sidebar.checkbox("Use Annealing") if use_cosine_annealing: annealing_strategy = st.sidebar.selectbox("Annealing Strategy", ["linear", "cosine"]) TAU = st.sidebar.slider("Start Temp.", 0.1, 10.0, 1.0) final_tau = st.sidebar.slider("Final Temp.", 0.1, 10.0, 1.0) else: annealing_strategy = None TAU = st.sidebar.slider("TAU", 0.1, 10.0, 1.0) optimizer_options = ["Adam", "AdamW", "SGD"] OPTMIZER = st.sidebar.selectbox("Optimizer", optimizer_options) LEARNING_RATE = st.sidebar.slider("Learning Rate", 1e-5, 1e-2, 1e-3) EMBEDDING_DIM = st.sidebar.slider("EMBEDDING_DIM", 1, 128, 16) HIDDEN_DIM = st.sidebar.slider("HIDDEN_DIM", 1, 128, 16) LATENT_DIM = st.sidebar.slider("LATENT_DIM", 1, 128, 16) SEQ_LEN = st.sidebar.slider("SEQ_LEN", 1, 128, 16) # TAU = st.sidebar.slider("TAU", 0.1, 10.0, 1.0) NHEAD = st.sidebar.slider("nhead", 1, 8, 4) NUM_LAYERS = st.sidebar.slider("num_layers", 1, 6, 2) BATCH_SIZE = st.sidebar.slider("BATCH_SIZE", 1, 128, 32) if st.sidebar.button('Start'): train_signal_game(NUM_SENDERS, NUM_RECEIVERS, num_rounds)