Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import re
|
4 |
+
import string
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
from nltk.tokenize import word_tokenize
|
7 |
+
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
8 |
+
import nltk
|
9 |
+
from keras.models import load_model
|
10 |
+
nltk.download('stopwords')
|
11 |
+
stop_words = set(stopwords.words('english'))
|
12 |
+
|
13 |
+
# downloading the additional resources required by nltk
|
14 |
+
nltk.download('punkt')
|
15 |
+
nltk.download('wordnet')
|
16 |
+
nltk.download('omw-1.4')
|
17 |
+
|
18 |
+
# model initiation
|
19 |
+
import xgboost
|
20 |
+
cv = joblib.load('finalized_model.sav')
|
21 |
+
model = joblib.load('BestModels/best_rf.sav')
|
22 |
+
|
23 |
+
def preprocess_text(text):
|
24 |
+
"""
|
25 |
+
Runs a set of transformational steps to
|
26 |
+
preprocess the text of the tweet.
|
27 |
+
"""
|
28 |
+
# convert all text to lower case
|
29 |
+
text = text.lower()
|
30 |
+
|
31 |
+
# remove any urls
|
32 |
+
text = re.sub(r'http\S+|www\S+|https\S+', "", text, flags=re.MULTILINE)
|
33 |
+
|
34 |
+
# replace '****' with 'curse'
|
35 |
+
text = re.sub(r'\*\*\*\*', "gaali", text)
|
36 |
+
|
37 |
+
# remove punctuations
|
38 |
+
text = text.translate(str.maketrans("", "", string.punctuation))
|
39 |
+
|
40 |
+
# remove user @ references and hashtags
|
41 |
+
text = re.sub(r'\@\w+|\#', "", text)
|
42 |
+
|
43 |
+
# remove useless characters
|
44 |
+
text = re.sub(r'[^ -~]', '', text)
|
45 |
+
|
46 |
+
# remove stopwords
|
47 |
+
tweet_tokens = word_tokenize(text)
|
48 |
+
filtered_words = [word for word in tweet_tokens if word not in stop_words]
|
49 |
+
|
50 |
+
# stemming
|
51 |
+
ps = PorterStemmer()
|
52 |
+
stemmed_words = [ps.stem(w) for w in filtered_words]
|
53 |
+
|
54 |
+
# lemmatizing
|
55 |
+
lemmatizer = WordNetLemmatizer()
|
56 |
+
lemma_words = [lemmatizer.lemmatize(w, pos='a') for w in stemmed_words]
|
57 |
+
|
58 |
+
return ' '.join(lemma_words)
|
59 |
+
|
60 |
+
def sentiment_analysis(text):
|
61 |
+
|
62 |
+
# print(text)
|
63 |
+
text = cv.transform([preprocess_text(text)])
|
64 |
+
pred_prob = model.predict_proba(text)[0]
|
65 |
+
|
66 |
+
output = {"not_cyberbullying": float(pred_prob[0]),
|
67 |
+
"gender": float(pred_prob[1]),
|
68 |
+
"religion": float(pred_prob[2]),
|
69 |
+
"age": float(pred_prob[3]),
|
70 |
+
"ethnicity": float(pred_prob[4]),
|
71 |
+
"other_cyberbullying": float(pred_prob[5])}
|
72 |
+
|
73 |
+
# print(output)
|
74 |
+
return output
|
75 |
+
|
76 |
+
|
77 |
+
intfc = gr.Interface(
|
78 |
+
fn=sentiment_analysis,
|
79 |
+
inputs=gr.Textbox(label="Input here", lines=2, placeholder="Input your text"),
|
80 |
+
outputs=gr.Label(label="Sentiment Analysis"),
|
81 |
+
)
|
82 |
+
intfc.launch(share=True)
|