Spaces:
Build error
Build error
import base64 | |
import math | |
import os | |
import time | |
from multiprocessing import Pool | |
import gradio as gr | |
import numpy as np | |
import pytube | |
import requests | |
from processing_whisper import WhisperPrePostProcessor | |
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
title = "Whisper JAX: The Fastest Whisper API ⚡️" | |
description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available. | |
Note that at peak times, you may find yourself in the queue for this demo. When you submit a request, your queue position will be shown in the top right-hand side of the demo pane. Once you reach the front of the queue, your audio file will be transcribed, with the progress displayed through a progress bar. | |
To skip the queue, you may wish to create your own inference endpoint, details for which can be found in the [Whisper JAX repository](https://github.com/sanchit-gandhi/whisper-jax#creating-an-endpoint). | |
""" | |
article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face." | |
API_URL = os.getenv("API_URL") | |
API_URL_FROM_FEATURES = os.getenv("API_URL_FROM_FEATURES") | |
language_names = sorted(TO_LANGUAGE_CODE.keys()) | |
CHUNK_LENGTH_S = 30 | |
BATCH_SIZE = 16 | |
NUM_PROC = 16 | |
FILE_LIMIT_MB = 1000 | |
def query(payload): | |
response = requests.post(API_URL, json=payload) | |
return response.json(), response.status_code | |
def inference(inputs, task=None, return_timestamps=False): | |
payload = {"inputs": inputs, "task": task, "return_timestamps": return_timestamps} | |
data, status_code = query(payload) | |
if status_code == 200: | |
text = data["text"] | |
else: | |
text = data["detail"] | |
timestamps = data.get("chunks") | |
if timestamps is not None: | |
timestamps = [ | |
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in timestamps | |
] | |
text = "\n".join(str(feature) for feature in timestamps) | |
return text | |
def chunked_query(payload): | |
response = requests.post(API_URL_FROM_FEATURES, json=payload) | |
return response.json() | |
def forward(batch, task=None, return_timestamps=False): | |
feature_shape = batch["input_features"].shape | |
batch["input_features"] = base64.b64encode(batch["input_features"].tobytes()).decode() | |
outputs = chunked_query( | |
{"batch": batch, "task": task, "return_timestamps": return_timestamps, "feature_shape": feature_shape} | |
) | |
outputs["tokens"] = np.asarray(outputs["tokens"]) | |
return outputs | |
def identity(batch): | |
return batch | |
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds | |
if __name__ == "__main__": | |
processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2") | |
stride_length_s = CHUNK_LENGTH_S / 6 | |
chunk_len = round(CHUNK_LENGTH_S * processor.feature_extractor.sampling_rate) | |
stride_left = stride_right = round(stride_length_s * processor.feature_extractor.sampling_rate) | |
step = chunk_len - stride_left - stride_right | |
pool = Pool(NUM_PROC) | |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: gr.Progress): | |
inputs_len = inputs["array"].shape[0] | |
all_chunk_start_idx = np.arange(0, inputs_len, step) | |
num_samples = len(all_chunk_start_idx) | |
num_batches = math.ceil(num_samples / BATCH_SIZE) | |
dummy_batches = list( | |
range(num_batches) | |
) # Gradio progress bar not compatible with generator, see https://github.com/gradio-app/gradio/issues/3841 | |
dataloader = processor.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) | |
progress(0, desc="Pre-processing audio file...") | |
dataloader = pool.map(identity, dataloader) | |
model_outputs = [] | |
start_time = time.time() | |
# iterate over our chunked audio samples | |
for batch, _ in zip(dataloader, progress.tqdm(dummy_batches, desc="Transcribing...")): | |
model_outputs.append(forward(batch, task=task, return_timestamps=return_timestamps)) | |
runtime = time.time() - start_time | |
post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps) | |
text = post_processed["text"] | |
timestamps = post_processed.get("chunks") | |
if timestamps is not None: | |
timestamps = [ | |
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in timestamps | |
] | |
text = "\n".join(str(feature) for feature in timestamps) | |
return text, runtime | |
def transcribe_chunked_audio(inputs, task, return_timestamps, progress=gr.Progress()): | |
progress(0, desc="Loading audio file...") | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") | |
file_size_mb = os.stat(inputs).st_size / (1024 * 1024) | |
if file_size_mb > FILE_LIMIT_MB: | |
raise gr.Error( | |
f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB." | |
) | |
with open(inputs, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate} | |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) | |
return text, runtime | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def transcribe_youtube(yt_url, task, return_timestamps, progress=gr.Progress(), max_filesize=75.0): | |
progress(0, desc="Loading audio file...") | |
html_embed_str = _return_yt_html_embed(yt_url) | |
try: | |
yt = pytube.YouTube(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
except KeyError: | |
raise gr.Error("An error occurred while loading the YouTube video. Please try again.") | |
if stream.filesize_mb > max_filesize: | |
raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.") | |
stream.download(filename="audio.mp3") | |
with open("audio.mp3", "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, processor.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": processor.feature_extractor.sampling_rate} | |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) | |
return html_embed_str, text, runtime | |
microphone_chunked = gr.Interface( | |
fn=transcribe_chunked_audio, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", optional=True, type="filepath"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
gr.inputs.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
gr.outputs.Textbox(label="Transcription Time (s)"), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
) | |
audio_chunked = gr.Interface( | |
fn=transcribe_chunked_audio, | |
inputs=[ | |
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
gr.inputs.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
gr.outputs.Textbox(label="Transcription Time (s)"), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
) | |
youtube = gr.Interface( | |
fn=transcribe_youtube, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
gr.inputs.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs=[ | |
gr.outputs.HTML(label="Video"), | |
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
gr.outputs.Textbox(label="Transcription Time (s)"), | |
], | |
allow_flagging="never", | |
title=title, | |
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]], | |
cache_examples=False, | |
description=description, | |
article=article, | |
) | |
demo = gr.Blocks() | |
with demo: | |
gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Microphone", "Audio File", "YouTube"]) | |
demo.queue(concurrency_count=3, max_size=5) | |
demo.launch(show_api=False, max_threads=10) | |