sanchit-gandhi commited on
Commit
9758654
·
1 Parent(s): 1d50b5e

split into 3 tabs and tweak q params

Browse files
Files changed (1) hide show
  1. app.py +28 -21
app.py CHANGED
@@ -13,7 +13,10 @@ from transformers.pipelines.audio_utils import ffmpeg_read
13
 
14
  title = "Whisper JAX: The Fastest Whisper API ⚡️"
15
 
16
- description = "Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available."
 
 
 
17
 
18
  API_URL = os.getenv("API_URL")
19
  API_URL_FROM_FEATURES = os.getenv("API_URL_FROM_FEATURES")
@@ -23,7 +26,7 @@ article = "Whisper large-v2 model by OpenAI. Backend running JAX on a TPU v4-8 t
23
  language_names = sorted(TO_LANGUAGE_CODE.keys())
24
  CHUNK_LENGTH_S = 30
25
  BATCH_SIZE = 16
26
- NUM_PROC = 8
27
  FILE_LIMIT_MB = 1000
28
 
29
 
@@ -73,19 +76,7 @@ if __name__ == "__main__":
73
  processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2")
74
  pool = Pool(NUM_PROC)
75
 
76
- def transcribe_chunked_audio(microphone, file_upload, task, return_timestamps):
77
- warn_output = ""
78
- if (microphone is not None) and (file_upload is not None):
79
- warn_output = (
80
- "WARNING: You've uploaded an audio file and used the microphone. "
81
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
82
- )
83
-
84
- elif (microphone is None) and (file_upload is None):
85
- return "ERROR: You have to either use the microphone or upload an audio file", None
86
-
87
- inputs = microphone if microphone is not None else file_upload
88
-
89
  file_size_mb = os.stat(inputs).st_size / (1024 * 1024)
90
  if file_size_mb > FILE_LIMIT_MB:
91
  return f"ERROR: File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", None
@@ -106,7 +97,7 @@ if __name__ == "__main__":
106
 
107
  post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps)
108
  timestamps = post_processed.get("chunks")
109
- return warn_output + post_processed["text"], timestamps
110
 
111
  def _return_yt_html_embed(yt_url):
112
  video_id = yt_url.split("?v=")[-1]
@@ -123,11 +114,27 @@ if __name__ == "__main__":
123
 
124
  return html_embed_str, text, timestamps
125
 
126
- audio_chunked = gr.Interface(
127
  fn=transcribe_chunked_audio,
128
  inputs=[
129
  gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
130
- gr.inputs.Audio(source="upload", optional=True, type="filepath"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
132
  gr.inputs.Checkbox(default=False, label="Return timestamps"),
133
  ],
@@ -164,7 +171,7 @@ if __name__ == "__main__":
164
  demo = gr.Blocks()
165
 
166
  with demo:
167
- gr.TabbedInterface([audio_chunked, youtube], ["Transcribe Audio", "Transcribe YouTube"])
168
 
169
- demo.queue(concurrency_count=3, max_size=10)
170
- demo.launch()
 
13
 
14
  title = "Whisper JAX: The Fastest Whisper API ⚡️"
15
 
16
+ description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v2) by OpenAI. It runs on JAX with a TPU v4-8 in the backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available.
17
+
18
+ Note that using microphone or audio file requires the audio input to be transferred from the Gradio demo to the TPU, which for large audio files can be slow. We recommend using YouTube where possible, since this directly downloads the audio file to the TPU, skipping the file transfer step.
19
+ """
20
 
21
  API_URL = os.getenv("API_URL")
22
  API_URL_FROM_FEATURES = os.getenv("API_URL_FROM_FEATURES")
 
26
  language_names = sorted(TO_LANGUAGE_CODE.keys())
27
  CHUNK_LENGTH_S = 30
28
  BATCH_SIZE = 16
29
+ NUM_PROC = 16
30
  FILE_LIMIT_MB = 1000
31
 
32
 
 
76
  processor = WhisperPrePostProcessor.from_pretrained("openai/whisper-large-v2")
77
  pool = Pool(NUM_PROC)
78
 
79
+ def transcribe_chunked_audio(inputs, task, return_timestamps):
 
 
 
 
 
 
 
 
 
 
 
 
80
  file_size_mb = os.stat(inputs).st_size / (1024 * 1024)
81
  if file_size_mb > FILE_LIMIT_MB:
82
  return f"ERROR: File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", None
 
97
 
98
  post_processed = processor.postprocess(model_outputs, return_timestamps=return_timestamps)
99
  timestamps = post_processed.get("chunks")
100
+ return post_processed["text"], timestamps
101
 
102
  def _return_yt_html_embed(yt_url):
103
  video_id = yt_url.split("?v=")[-1]
 
114
 
115
  return html_embed_str, text, timestamps
116
 
117
+ microphone_chunked = gr.Interface(
118
  fn=transcribe_chunked_audio,
119
  inputs=[
120
  gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
121
+ gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
122
+ gr.inputs.Checkbox(default=False, label="Return timestamps"),
123
+ ],
124
+ outputs=[
125
+ gr.outputs.Textbox(label="Transcription"),
126
+ gr.outputs.Textbox(label="Timestamps"),
127
+ ],
128
+ allow_flagging="never",
129
+ title=title,
130
+ description=description,
131
+ article=article,
132
+ )
133
+
134
+ audio_chunked = gr.Interface(
135
+ fn=transcribe_chunked_audio,
136
+ inputs=[
137
+ gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
138
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
139
  gr.inputs.Checkbox(default=False, label="Return timestamps"),
140
  ],
 
171
  demo = gr.Blocks()
172
 
173
  with demo:
174
+ gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Transcribe Microphone", "Transcribe Audio File", "Transcribe YouTube"])
175
 
176
+ demo.queue(max_size=3)
177
+ demo.launch(show_api=False)